
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor qua lity

illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Inform ation C o m p an y

30 0 N orth Z e e b R oad. Ann Arbor. Ml 48106-1346 USA
3 1 3 /761-4700 800 /5 2 1 -0 6 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O rder N um ber 9S2S595

C o n cep tu a l m odels a n d in d iv id u a l cogn itive le a rn in g sty les in
teach in g recu rs io n to novices

Wu, Cheng-Chih, Ph.D.

The University of Texas at Austin, 1993

U M I
300 N. Zeeb Rd.
Ann Aibor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONCEPTUAL MODELS AND INDIVIDUAL

COGNITIVE LEARNING STYLES

IN TEACHING RECURSION

TO NOVICES

by

CHENG-CHIH WU, B.ED., M.ED.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May, 1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONCEPTUAL MODELS AND INDIVIDUAL

COGNITIVE LEARNING STYLES

IN TEACHING RECURSION

TO NOVICES

APPROVED BY
DISSERTATION COMMITTEE:

fiSleJL— ■*

^VllA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Copyright

by

Cheng-Chih Wu

1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To my wife, Shih-Ching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgements

I would like to express my gratitude to the members of my dissertation

committee: Dr. Lowell J. Bethel for his guidance on research methodologies and

continuous encouragement; Dr. Nell B. Dale for her inspiration and strong support

in carrying out the investigation; and Drs. James P. Barufaldi, John P.

Huntsberger, and Gordon S. Novak Jr. for their unswerving support and helpful

suggestions.

I would like to thank the participating students who provided invaluable

information and the instructor, Suzy Gallagher, who gave her graciously

assistance for this investigation. I am also grateful to Vicki Almstrum, Debra

Burton, Dean Johnson, Xiang-Seng Lee, Jerry Norton, Quincy Spurlin, and Angel

Syang for their professional advice and friendship during the course of the

investigation. A special thank is due to Helen Kluna and Sonya Payne for their

help during my stay in Texas.

Appreciation is extended to the Ministry of Education, Taiwan, R.O.C. for

providing the scholarship and support for my doctoral studies in the U.S.A.

A very special thanks is due to my mother, Koan Wang Wu, and my

parents-in-law, Pao-Hsiu Lin and Hsiu-Shiung Wang, for their profound support

and encouragement throughout all these years. Finally, I would like to thank my

wife, Shih-Ching, and son, Pei-Shin, whose love and support were essential for

the completion of the dissertation.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONCEPTUAL MODELS AND INDIVIDUAL

COGNITIVE LEARNING STYLES

IN TEACHING RECURSION

TO NOVICES

Publication No._____________

Cheng-Chih Wu, B.Ed., M.Ed.

The University of Texas at Austin, 1993

Supervisors: Lowell J. Bethel and Nell B. Dale

This study investigated how different types of conceptual models and

cognitive learning styles influence novice programmers when learning recursion.

A pretest-posttest, 2 X 2 (conceptual models X learning styles) factorial

experimental design was implemented in order to study the problem. Two

hundred thirty-seven students enrolled in an introductory computer science course

at a major southwest research university served as the subjects for this study.

Subjects were randomly assigned to either an abstract model group or a concrete

model group and the groups were of approximately equal size. Different

conceptual models (abstract or concrete) were used to present recursion to the two

model groups. Within each model group, subjects were identified as either an

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

abstract learner or a concrete learner based on their scores on the scrambled Kolb's

Leaming-Style Inventory 1985. A posttest and two retention tests were

administered after the treatment to compare students' performance in different

groups. A pretest administered prior to the treatment was used to equate the

variance caused by students' prior knowledge in the statistical analysis. The

statistical procedure of two-way ANCOVA was employed to analyze all of the

performance data.

The findings of this study are: Concrete conceptual models were better

than abstract conceptual models in teaching recursion to novice programmers.

However, the teaching effects weakened several weeks after classroom

instruction. Novice programmers with abstract learning styles performed better

than those with concrete learning styles when learning recursion. Finally, abstract

learners did not necessarily benefit more from abstract conceptual models, and

concrete learners did not necessarily benefit more from concrete conceptual

models.

A replication study with a longer treatment period that covers more aspects

of recursive programming is recommended for future research. Additional

research needs to be conducted to better understand students' mental models of

recursion. Furthermore, future research should investigate how the other

dimension of Kolb's learning styles (i.e., active-reflective) relates to the

instructional methods provided. It is also recommended that the relationship

between the characteristic of learning tasks (or domains) and the matching of

learning styles with conceptual models be investigated.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

List of Figures... xi

List of Tables...xii

Chapter 1 Introduction... 1
1.1 Background... 1
1.2 Statement of Problem..3
1.3 Purposes of the Study..3
1.4 Research Questions...4
1.5 Rationale...4

1.5.1 Conceptual Models...4
1.5.2 Cognitive Learning Styles...7
1.5.3 Conceptual Models in Teaching Recursion..................................9

1.6 Research Hypotheses.. 10
1.7 Significance of the Study.. 12
1.8 Definition of Terms...13
1.9 Delimitations... 14
1.10 Overview of the Dissertation.. 15

Chapter 2 Related Literature.. 17
2.1 Introduction... 17
2.2 Mental Models.. 19

2.2.1 Schemata and Mental Models... 19
2.2.2 Definitions...21
2.2.3 "Running" Mental Models..23
2.2.4 Building Mental Models... 23

2.3 Conceptual Models...27
2.3.1 Ausubel's Subsumption Theory..28
2.3.2 Mayer’s Assimilation Theory.. 30
2.3.3 Concrete and Abstract Conceptual Models................................. 33

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3.4 Related Research... 40
2.4 Cognitive Learning Styles... 46

2.4.1 Learning Styles Theory... 47
2.4.2 Kolb's Experiential Learning.. 50
2.4.3 Learning Styles and Conceptual Models.................................... 52
2.4.4 Related Research... 54

2.5 Teaching Recursion.. 56
2.5.1 Problems in Learning Recursion... 57
2.5.2 Models in Teaching Recursion... 61
2.5.3 Related Research... 65
2.5.4 Implications for Instruction... 67

2.6 Summary... 68

Chapter 3 Research Method... 70
3.1 Introduction... 70
3.2 Research Hypotheses.. 70
3.3 Sample... 72
3.4 Experimental Design... 73
3.5 Experimental Treatments and Procedures..75
3.6 Instrumentation... 78

3.6.1 Leaming-Style Inventory 1985 (LSI-1985)................................78
3.6.2 Instructional Materials.. 83
3.6.3 Pretest and Recursion Achievement Tests..................................90

3.7 Data Collection... 95
3.8 Data Analysis.. 96
3.9 Pilot Study Results.. 97

3.9.1 Pilot Study 1.. 97
3.9.2 Pilot Study 2.. 100

3.10 Summary..105

Chapter 4 Research Findings..106
4.1 Overview of Analysis Procedures... 106

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Results of Data Analysis..107
4.2.1 Analysis of the Posttest..108
4.2.2 Analysis of the Retention Tests...110

4.3 Summary of Findings...114

Chapter 5 Conclusioa...117
5.1 Summary..117
5.2 Discussion of the Results...119

5.2.1 Conceptual Models..119
5.2.2 Cognitive Learning Styles..123
5.2.3 Conceptual Models X Learning Styles......................................124

5.3 Implications..126
5.4 Recommendations for Future Research...128

Appendices..131
Appendix A Introduction to Recursion..131
Appendix B Consent Form..132
Appendix C Scrambled Leaming-Style Inventory 1985............................ 133
Appendix D Item Format for the Scrambled LSI-1985.............................. 134
Appendix E Concrete Instructional Material.. 135
Appendix F Examples of Block Tracing Diagram......................................137
Appendix G Transparencies for Concrete Instructional Material............... 138
Appendix H Abstract Instructional Material.. 145
Appendix I Transparencies for Abstract Instructional Material................. 147
Appendix J Pretest...154
Appendix K Posttest..162
Appendix L Retention Test 1...164
Appendix M Retention Test 2..167

Bibliography...170

Vita

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

Figure 2.1 Mental Model Formation Process (from Sein, 1988)........................ 25

Figure 2.2 Mayer's Assimilation Theory (from Mayer, 1981)............................ 31

Figure 2.3 Mayer's Concrete Model of the Computer for a BASIC-like

Language... 32

Figure 2.4 Kolb's Four Learning Styles.. 51

Figure 3.1 Experimental Procedures... 77

Figure 3.2 A Framework for Teaching Recursion.. 85

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Tables

Table 2.1 Kinds of Mapping in SMT...35

Table 2.2 Related Research in Conceptual Models...45

Table 3.1 Internal Consistency for the LSI.. 80

Table 3.2 Test-retest Correlations for the LSI... 81

Table 3.3 Item Difficulty for the Three Recursion Tests................................... 94

Table 3.4 Distribution of Learning Styles by Class for Pilot Study 1...............98

Table 3.5 Distribution of Learning Styles by Sex for Pilot Study 1.................98

Table 3.6 Factor Loading for the Scrambled LSI (N = 440)............................. 99

Table 3.7 Subjects Distribution of Pilot Study 2 ..101

Table 3.8 Descriptive Statistics on the Posttest Measure for Pilot Study 2.... 103

Table 3.9 ANCOVA Results on the Posttest Measure for Pilot Study 2......... 103

Table 4.1 Distribution of Subjects... 107

Table 4.2 Descriptive Statistics on the Posttest Measure................................. 108

Table 4.3 ANCOVA Results on the Posttest Measure,.................................... 109

Table 4.4 Descriptive Statistics on Retention Test 1 Measure........................ I l l

Table 4.5 ANCOVA Results on Retention Test 1 Measure............................ 112

Table 4.6 Descriptive Statistics on Retention Test 2 Measure........................ 112

Table 4.7 ANCOVA Results on Retention Test 2 Measure............................ 113

Table 4.8 Summary of Hypotheses Testing... 115

Table 5.1 Summary of Studies on Interaction Effects..................................... 125

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 Introduction

1.1 Background

Recursion is basic to computer science, whether it is understood as a

mathematical concept, a programming technique, or a way of problem-solving

(McCracken, 1987). Understanding recursion is thought to be central in

understanding complex data structures and program control (Rohl, 1984).

Computer science educators have found that recursion is a very difficult concept

for students to learn and teachers to teach (Ford, 1982, 1984; Henderson &

Romero, 1989; Kurland & Pea, 1983; Widenbeck, 1989). Pirolli and Anderson

(1985) argued that the lack of everyday analogies for recursion is what makes it so

difficult to learn. Kurland and Pea (1983) found that students tend to develop an

incorrect mental model of recursion. Many of the students had formed a mental

model of recursion as a form of looping. Other studies (e.g., Bhuiyan, Greer, &

McCalla, 1991; Kahney 1983) found this same incorrect mental model of

recursion and other incorrect models as well.

A mental model is a conceptual representation of an abstract concept or a

physical system that provides predictive and explanatory powers to a person in

trying to understand the concept or the system and guides their interaction with it

(Norman, 1983). The system that the person is learning or using is defined as the

target system. A conceptual model, which is defined by teachers, scientists, or

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

engineers, provides an appropriate representation of a target system, appropriate

in the sense of being accurate, consistent, and complete (Norman, 1983).

Understanding a system can be defined as having an accurate mental model of the

system. Conceptual models are used as tools for the understanding or teaching of

a system. It is the responsibility of teachers to develop conceptual models that will

aid students in developing adequate and appropriate mental models.

Many conceptual models have been used in teaching recursion to novice

programmers such as the Russian Dolls model, the process tracing model, and the

mathematical induction model. It is hoped that these models will facilitate the

learning of recursion by helping students develop an accurate mental model of

recursion.

In addition to conceptual models, individual differences such as cognitive

learning styles, cognitive abilities, and previous experiences with a similar system

play a role in the mental model formation process of learning computer systems

(Jagodzinski, 1983; Sein & Bostrom, 1989). There is evidence that individual

cognitive learning styles are related to programming ability in novice

programmers (Cavaiani, 1989; Merrienboer, 1988,1990). However, the influences

of cognitive learning styles in students' learning of recursion has not been studied.

This study is designed to investigate how conceptual models and cognitive

learning styles influence novice programmers in learning recursion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

1.2 Statement of Problem

The problem with which this study is concerned is as follows: Which of

two conceptual models (concrete or abstract) will best help novice programmers

with different cognitive learning styles (concrete or abstract) to learn recursion?

1J Purposes of the Study

Computer science educators have found that recursion is a very difficult

concept for students to learn. Part of the reasons may be because there are few

analogies of recursion in students' everyday lives. Conceptual models are used as

an analogy to aid students in building mental models of the target system. The

purpose of this study is to investigate the effectiveness of conceptual models

designed to help novice programmers gain an initial understanding of recursion.

An initial understanding means having an accurate mental model of the concept It

serves as the basis for further learning of higher level skills.

Another purpose of this study is to study the effects of students' learning

styles on their learning of recursion. It has been shown that individual differences,

such as learning styles, have an effect on how people perceive and process

information, but no studies have been done relating learning styles to the learning

of recursion. The learning styles examined in this study are abstract vs. concrete

learning styles.

The relationship between learning styles and conceptual models used to

present information is less clear in the literature. To understand the interactive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

effects between the provided conceptual models and students' learning styles is

the other purpose of this study.

1.4 Research Questions

The research questions for this study are:

1. Are concrete conceptual models better than abstract conceptual models

in helping students to learn recursion?

2. Do students with an abstract learning style (i.e., abstract learners)

outperform students with a concrete learning style (i.e., concrete

learners) in learning recursion?

3. Do students with an abstract learning style learn recursion better when

provided with abstract conceptual models?

4. Do students with a concrete learning style learn recursion better when

provided with concrete conceptual models?

1.5 Rationale

1.5.1 Conceptual Models

Ausubel's (1978) theory of subsumption and Mayer's (1981) theory of

assimilation provide theoretical explanations for the effectiveness of conceptual

models. Both theories consider meaningful learning as a process of connecting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

new material to prior knowledge. When no prior knowledge is presented when

learning a new domain, external assistance must be provided. Ausubel used

advance organizers as such aids. The corresponding concept in teaching novice

programmers is a conceptual model. Both theories propose that students can form

a better mental model through the assistance of a conceptual model.

Gentner (1983) proposed a Structural Mapping Theory (SMT) to explain

the process by which users make an analogy from a conceptual model to the

target system. This theory views an analogy as a relational structure that applies to

one domain (the "base") and can be effectively applied to another domain (the

"target"). Conceptual models act as a "base" from which inferences can be made

about the target system. An abstract conceptual model is the one that has an

abstract base domain such as mathematical models. A concrete conceptual model

has a more concrete base domain such as concrete objects. According to SMT,

concrete and abstract models are actually opposite ends of the same continuum.

They delineate the target system with varying degrees of concreteness. The basic

difference between these two models lies in the concreteness of the objects in the

base domain. Gentner believed that different models lead to a predictable

difference in understanding of the target domain.

In the domain of teaching programming, Mayer (1979) and du Boulay et

al. (1981) argued for the advantages of explaining the process which takes place

within the black box (computers). They believed that a concrete conceptual model

which showed the process of the system at an appropriate level of details would

improve learning. This is called a glass box approach. However, Kurtz and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

Kemeny (1985) proposed that programming should be taught to novices so that

they do not have to aware of how the machine functions. Teaching programming

from the concept of abstraction is a black box approach.

In summary, it can be concluded that a concrete model is a concrete

analogy of a target system in terms of another system. It shows the internal

process of the system at an appropriately detailed level. An abstract model is a

synthetic representation of the underlying conceptual structure of a target system.

The internal details of the system are hidden through abstraction.

Previous research (e.g., Bayman & Mayer, 1984; Kieras & Bovair;

Rumelhart & Norman, 1981; Schlager & Ogden, 1986) have shown the

effectiveness of using conceptual models in teaching/training computer systems.

Several studies (Borgman, 1983/1984; Halasz, 1985) further concluded that the

effects were significant especially in creative and complex tasks. However, which

type of conceptual model (concrete or abstract) is more effective in teaching is

inconclusive. Bennet (1984) and Sein, Bostrom, and Olfman (1987) found that,

for simple tasks, subjects trained with concrete models performed better than

those trained with abstract models, but for complex tasks, the effect was reversed.

Schlager and Ogden (1986) and Sein (1988) found no significant difference

between the two types of models.

Not many studies have been done in the field of programming using

conceptual models. Mayer's series studies (1981, 1982, 1985, 1987, 1988) have

provided experimental evidence that concrete model promotes learning. However,

his series research did not explore more complex conceptual knowledge involved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

in large program segments such as the concept of a loop or the concept of a data

structure. Nor did he compare the effects of different types of conceptual models.

The present investigation studied the effects of both types of conceptual models in

a more complex conceptual knowledge domain — recursion.

1.5.2 Cognitive Learning Styles

Researchers in mental models (Norman, 1983,1987; van der Veer & Felt,

1988) have pointed out that style of information processing (i.e., cognitive

learning styles) was one of main individual difference features that affected the

formation and acquisition of mental models. Individual styles of information

processing not only result in preferences for different modes of presentation of

learning materials and of analogies, but also lead to individual differences in the

organization of semantic knowledge.

Kolb's experiential learning (Kolb, 1984) is a theory of cognitive learning

styles. He believes that it is the combination of how people perceive and how they

process information that forms the uniqueness of their own learning style, i.e., the

most comfortable and productive way to learn. More specifically, there are two

main dimensions of the process by which people learn. The first is the way we

perceive new information and is presented as a concrete-abstract continuum. In

new situations, some people prefer to sense and feel their way (Concrete

Experience) while others prefer to think their way through (Abstract

Conceptualization). The second dimension, active-reflective continuum, is how

we process new information. Some people prefer to jump in and try things (Active

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8

Experimentation) while others prefer to process new information by reflecting on

it (Reflective Observation).

According to the theory, the extremes of each dimension are mutually

exclusive. If we try to simultaneously perceive new information, for example, by

Concrete Experience and by Abstract Conceptualization, a conflict situation will

arise. To resolve the conflict, each individual must choose how to perceive the

iiew information and how to process it. Therefore, e; ih individual develops a

preference, i.e., a learning style, to perceive and process new information.

There appears to be some connection between the conceptual models and

the concrete-abstract dimension of learning styles. Individuals with an abstract

learning mode tend to discover the rules and structures inherent in an abstract

model. These individuals take an analytical conceptual approach to learning.

Individuals who prefer a concrete learning mode take an experiential-based

approach to learning. Therefore, the concrete model seems more appropriate.

There is evidence (Bostrom, Olfman, & Sein, 1987; Sein & Bostrom, 1989) that

abstract learners benefit more from an abstract model and are hampered by a

concrete model. Concrete learners, on the other hand, benefit more from a

concrete model. In addition, both Sein and Bostrom (1989) and Zuboff (1988)

found that abstract learners performed better than concrete learners on their

experimental tasks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

1.5.3 Conceptual Models in Teaching Recursion

Many conceptual models have been used in introducing recursion. Five

widely used models will be examined below. As for the relative concreteness of

the models, the first three can be categorized as concrete models and the

remaining two as abstract models. Other conceptual models can be found in

Mumane (1991).

Russian Dolls (Bowman & Seagraves, 1985; Dale & Weems, 1991) A

Russian Doll can be taken apart into many successively smaller dolls of the same

shape. It displays the process of invoking a smaller size of itself (recursive case)

and eventually the recursive process stops when the last doll does not contain

another (base case).

Process Tracing (Dale & Weems, 1991; Koffman, 1992; Kruse, 1982)

This approach focuses on tracing the process generated by recursive functions,

that is, how recursive functions work. This model is clearly a concrete model, but

the degree of concreteness may be varied depending on the method used in tracing

the process.

Stack Simulation (Dale & Lily, 1991; Greer, 1987; Tenenbaum &

Augenstein, 1986) Recursion is introduced in terms of computer architectures for

execution of recursive programs. Calls to functions or procedures are traced with

explicit reference to the system stack mechanism that is used in the Pascal

implementation of recursion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

Mathematical Induction (Aho & Ullman, 1992; Ford, 1984; Henderson

& Romero, 1989) This approach introduces recursion in terms of the

mathematical basis for its correctness; that is, proof by induction.

Structure Template (Pirolli, 1985/1986a, 1986b) This model provides

novice programmers with samples of recursive programs and describes the base

cases and recursive cases. Solving a recursive problem is similar to filling in the

slots of base case(s) and recursive case(s) in a structural template.

Pirolli (1985/1986a) found subjects receiving the structure template model

learned to program their recursive functions in less time than did subjects

receiving the process tracing model. The performance on the tasks between these

two groups was not compared. Greer (1987) found no significant difference in

students' performance with recursive tasks when they were taught with

architecture-oriented (stack simulation), theory-oriented (mathematical induction),

and task-performance-oriented (structure template) models. Neither researcher

investigated the effects of individual differences and its interaction with the

conceptual models.

1.6 R e s e a rc h H y p o th ese s

Eight hypotheses are developed in order to answer the research questions.

Performance on recursive tasks measured by a posttest immediately after the

treatment and two retention tests after two and six weeks of the treatment, will be

used to test the hypotheses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

Since the concrete conceptual models provide a concrete base domain to

infer recursion, novices tend to gain more understanding of recursion through

these models. The following two hypotheses will be examined in order to answer

research question 1.

HI: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the

posttest measure.

H2: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the

retention measure.

It is hypothesized that abstract learners rely on logical thinking and

develop theories to solve problems. They may perform better in learning an

abstract concept such as recursion. For research question 2, the hypotheses are:

H3: Abstract learners will outperform concrete learners on the posttest

measure.

H4: Abstract learners will outperform concrete learners on the retention

measure.

Students with an abstract learning style may easily adapt ideas when

provided with abstract conceptual models, whereas students with a concrete

learning style may learn better when provided with concrete conceptual models.

The hypotheses for research question 3 are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

H5: Abstract learners perform better on the posttest measure when

provided with abstract conceptual models as opposed to concrete

conceptual models.

H6: Abstract learners perform better on the retention measure when

provided with abstract conceptual models as opposed to concrete

conceptual models.

And, the hypotheses for research question 4 are:

H7: Concrete learners perform better on the posttest measure when

provided with concrete conceptual models as opposed to abstract

conceptual models.

H8: Concrete learners perform better on the retention measure when

provided with concrete conceptual models as opposed to abstract

conceptual models.

1.7 Significance of the Study

Recursion is an important concept in computer science. Most computer

science students have difficulty in understanding the mechanism of recursion and

in writing recursive programs. Consequently, they are often frustrated and fail the

following data structure and algorithm classes, which are fundamental cores of

computer science and require recursion as a prerequisite.

This study is an attempt to find effective ways to teach recursion and, at

the same time, consider individual differences such as cognitive learning styles. If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

we can reduce or resolve the difficulty of learning recursion through this study, it

will be of great help to the field of computer science education.

1.8 Definition of Terms

Recursion is a mechanism for defining something in terms of a simpler

version of itself (See Appendix A).

Performance in Recursion as considered in this investigation is the

achievement in two related skills (1) to read and understand recursive programs,

(2) to construct recursive programs, i.e., to generate the base case(s) and recursive

case(s) for a problem.

A Mental Model is a conceptual representation of an abstract concept or

physical system that provides predictive and explanatory powers to a person in

trying to understand the concept or the system and guides their interaction with it.

It is internal to a person (Norman, 1983).

A Conceptual Model is designed by teachers, scientists, or engineers. It

provides an appropriate representation of a concept or a system (target system). It

is external to a person (Norman, 1983). Conceptual models act as a "base" from

which inferences can be made about the target system.

An Abstract Conceptual Model or Abstract Model is described as

having an abstract base domain such as mathematical models in inferring a target

system. The internal details of the target system are hidden through abstraction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

A Concrete (or Analogical) Conceptual Model or Concrete Model is

described as having a more concrete base domain such as concrete objects in

inferring the target system. It shows the internal process of the target system at an

appropriately detailed level.

Cognitive Learning Styles or Learning Styles are the unique ways

whereby an individual perceives and processes new information and are the means

by which an individual prefers to learn (Kolb, 1984).

Concrete Learners are individuals with a Concrete Learning Style who

prefer to sense and feel when learning. They perceive information in concrete

form and use intuition (Kolb, 1984).

Abstract Learners are individuals with an Abstract Learning Style who

prefer to think their way through when learning. They use reasoning and

analytical skills to perceive information (Kolb, 1984).

1.9 delimitations

This study is concerned with how novice programmers learn recursion.

The subjects under investigation are students who enrolled in the first computer

science course (CS 304P) at a major southwest research university. Most students

in the course are novice programmers. Thus, they are the perfect sample for this

study. The only restriction is that there is just one lecture session scheduled for

recursion in the course. However, the concept of recursion can still be presented in

one lecture session without losing its completeness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

Because of the time factor, the scope of recursion in this study will be

limited to recursive functions with simple variables. Recursion with structured

variables and using procedures, which involves more complicated context, will

not be investigated in this study.

1.10 Overview of the Dissertation

This study investigates how conceptual models and individual cognitive

learning styles influence novice programmers when learning recursion. The

dissertation is organized as follows:

Chapter 1 is an introduction to the study. The chapter addresses the

background and rationale of the study. The purpose, research questions, and

hypotheses of the study are also developed and contained in this chapter.

Chapter 2 is a thorough review of related literature and research. The

theoretical background of conceptual models and cognitive learning styles

together with the research findings in these two fields are analyzed and described.

Next, the problems and the conceptual models used in teaching recursion are

discussed. The chapter concludes with a summary of related research findings.

Chapter 3 describes the methodology of the study. The sample,

experimental design, procedures, instrumentation, and data analysis are described

in detail. The reliability and validity of the instrumentation are further investigated

based on the data collected from the pilot studies and the present investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

The results of two pilot studies prior to the current investigation are reported at the

end of the chapter.

Chapter 4 presents the findings of the study. Data collected from the

experiment is analyzed using computer statistical procedures. The results of

hypotheses testing are presented, followed by a summary of the findings.

Chapter 5 presents a discussion of the results of the study and conclusions

together with implications and recommendations for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 Related Literature

2.1 Introduction

To understand a system (or a concept) means having accurate mental

models of the system (or the concept). Conceptual models are designed as aids to

help students to build accurate mental models of the system. In the consideration

of building mental models we need to consider four different things: the target

system to be learned, the conceptual model of the target system, the user's mental

model of the target system, and the scientist's conceptualization of that mental

model. Norman (1983) made a clear distinction of these four terms:

(1) Target system. The system that a person is learning or using, e.g., a

computer system. The target system in this investigation is the recursion concept

within the context of Pascal programming.

(2) Conceptual models. A conceptual model is invented to provide an

appropriate representation of the target system, appropriate in the sense of being

accurate, consistent, and complete. Conceptual models are invented by teachers,

designers, scientists, or engineers.

(3) Mental models. The concept denotes the knowledge structure a person

applies in interacting with the target system. These models need not be technically

accurate (and usually are not), but they must be functional. This model evolves

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

during interaction with the target system, especially during the initial learning

phase.

(4) Scientist's conceptualization o f the mental models. This is the idea that

the psychologist or researcher has about the mental models of a person in

interacting with the target system. To figure out what models people actually have

requires one to go to the individuals, to do psychological experimentation and

observation.

In addition to conceptual models, many researchers (e.g., Jagodzinski,

1983; Sein & Bostrom, 1989; van der Veer & Felt, 1988) have proposed that

individual differences, such as prior experience or learning styles, play a role in

human mental model formation process. The kind of individual differences

concerned in this investigation is individuals' cognitive learning styles.

This chapter will first review the theoretical background of mental models,

including their definition and how they are built and used by a person. Next, the

two factors conceptual models and learning styles which affect the formation of

mental models, will be described and analyzed. Finally, the target system in this

investigation, recursion, as well as the conceptual models used to teach it will be

thoroughly reviewed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

2.2 Mental Models

2.2.1 Schemata and Mental Models

Researchers have always considered the problem of mental knowledge

representation as a fundamental issue in understanding complex human behavior.

In resent years a number of constructs have been developed to deal with the

mental representation of complex phenomena: frames (Minsky, 1975), scripts

(Schank & Abelson, 1977), schemata (Rumelhart, 1980), and mental models

(Johnson-Laird, 1980,1983). Brewer (1987) argued that frames, scripts, and

schemata are all examples of one general class of knowledge structure and

referred it as 'schemata'. He concluded that schemata are unconscious mental

structures that underlie the major aspects of human knowledge and skill.

Schemata interact with incoming information to modify the generic information in

the schemata and to produce instantiated schemata of the incoming information.

West, Farmer, and Wolff (1991, p. 7) reviewed related literature and

defined schemata by including the following ideas: (a) schemata are mental data

structures; (b) schemata represent our knowledge about objects, situations, events,

self, sequences of actions, and natural categories; (c) schemata are like plays and

scripts of plays; and (d) schemata are like theories. In other words, schemata are

like packets or bundles in which the mind stores knowledge: They are patterns,

structures, or scaffolds. Schemata are generalized units of knowledge or memory

representations about a particular domain or concept

A number of researchers have pointed out that schemata are inadequate to

account for a wide range of phenomena. Human beings are capable of dealing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

with situations that do not involve old generic information. Thus, we can

understand actions that we have never carried out before. Schemata theory cannot

explain the situations that do not involve old generic information. In addition,

schemata are limited to representations of knowledge and seldom explain how

such representations are used in problem solving and learning environments

(Borgman, 1983/1984; Sein, 1988). Schemata are mainly a static memory

representation and cannot be used to run this representation to simulate a problem

to arrive at a possible solution. The construct of mental models proposed by

Johnson-Laird (1980, 1983) was introduced to deal with these problems. He

emphasized that mental models are specific, not generic, representations and

argued that they give rise to images (1983). The images can be manipulated in

problem solving or learning situations and provide the dynamic aspects of the

memory presentation.

Brewer (1987) argued that schemata and mental models do not really

differ in terms of the specific/generic dimensions nor in the issue of imagery. He

concluded that they are just two forms of memory representations. Schemata are

precompiled generic knowledge structures, while mental models are specific

knowledge structures that are constructed to represent a new situation through the

use of generic knowledge of space, time, causality and human intendonality.

Recent developments of Anderson's ACT* theory (Anderson, 1983), which is

based on schemata theory, account for problem solving aspects of knowledge

representation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

Researchers’ views about the differences between schemata and mental

models are diverse. But, it may be concluded that the theoretical root of mental

models is schemata theory (Bennett, 1984). Mental models represent the

progression of schemata from a static representation to a more dynamic one.

2.2.2 Definitions

The term Mental Model is attributed to Johnson-Laird (1980):

A mental model represents a state of affairs and accordingly its
structure is not arbitrary like that of a prepositional representation,
but plays a direct representational or analogical role. Its structure
mirrors the relevant aspects of the corresponding state of affairs in
the world, (p. 98)

Using this construct, Johnson-Laird has been able to provide an account

for a wide variety of phenomena, such as comprehension of texts involving spatial

descriptions and inferences derived from a particular mental model of a specific

situation. Thus, mental models, like schemata, capture an important characteristic

of human cognition. In its most generic definition, the term Mental Models can be

applied to any mental event or, somewhat narrower, to any thought process. In

this sense, one can have a mental model of one’s own behavior, another person’s

behavior, or any information process mediated by people or machines (Carroll &

Olson, 1987).

Many mental models research have been carried out in the modeling of

physical systems or computer packages. Several descriptions of the term Mental

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

Models exist in the literature. Norman (1983) stated that it is the major underlying

conceptual theme in the area that:

In interacting with the environment, with others, and with the
artifacts of technology, people form internal mental models of
themselves and of the things with which they are interacting. These
models provide predictive and explanatory power for
understanding the interaction, (p. 7)

Bennett (1984) described a mental model as "... an individual's knowledge

and/or beliefs about a particular domain which allows effective reasoning within

that domain" (p. 12). Sein (1988) proposed that "Mental models are the users'

understanding or knowledge of the system that serves as reasoning aids" (p. 36).

Kieras and Bovair (1984) defined mental models as "some kind of understanding

of how the device works in terms of its internal structure and processes" (p. 255).

All the definitions maintained the representational features and reasoning power

of mental models.

A more conclusive and explicit definition was provided by Carroll and

Olson (1987):

The user's mental model of a system is defined as a rich and
elaborate structure, reflecting the user's understanding of what the
system contains, how it works, and why it works that way. It can
be conceived as knowledge about the system sufficient to permit
the user to mentally try out actions before choosing one to execute.
(p. 12)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

23

2.2.3 "Running” Mental Models

An important feature of a mental model is that it can be "run" with trial,

exploratory inputs and observed for its results. This dynamic nature of a mental

model distinguishes it from being simply a plain memory presentation. This

"running" feature is based on the imaginal properties of mental models provided

in the literature. For example, de Kleer and Brown (1981) stated that mental

models are generated "by running a qualitative simulation in the mind's eye" (p.

286). Collins (198S) stated that mental models "imply a conceptual representation

that is qualitative, and that you can run in your mind's eye and see what happens"

(p. 80).

Mental models are used during learning (e.g., using an analogy to begin to

understand how a system works), in problem solving (e.g., performing a novel

task), and when the user is attempting to rationalize or explain the system's

behavior. In other words, such a representation must be capable of simulation;

users should be able to 'run' this representation to derive a possible solution for the

problem. Thus, the quality of mental models becomes crucial in the running of the

models. Accurate mental models will result in effective learning and better

performance in problem solving; whereas inaccurate mental models may result in

ineffective learning and poor performance in problem solving.

2.2.4 Building Mental Models

As with other theories in cognitive science, the mental models of human

beings are not directly observable. No research has been able to 'prove' the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

existence of mental models. Therefore, researchers can only try to infer what

models users hold by observing users interacting with a system or by users' self-

reports. Much of the work on the formation and development of mental models

has begun with the premise that the user possesses a mental model of the system

and has then explored the characteristics of that mental model. Researchers first

state the behavioral outcomes that can be attributed to the existence of the

hypothesized structures of the mental models. Next, in an experimental setting,

observations can be made to determine whether the predicted behavior occurred.

Behaviors suggested and examined include, for example, quality of performance

and learning, nature of errors, and the sketching and drawing of procedures (Sein,

1988).

Norman provided a fundamental framework for this line of research. He

(1983) modeled a person's mental model of a particular system by defining four

concepts. Let the particular target system to be learned be called t. The conceptual

model of t is C(t). The conceptual model is designed as a tool for understanding

and teaching the target system. The person's mental model of the system is defined

as M(t). And the scientists’ conceptualization of a mental model is C(M(t)). While

the mental model is unobservable, researchers are forced to work within scientists'

conceptualization of a person's mental model, C(M(t)), and must perform

experimentation to figure out what models the person actually has. According to

him, mental models are naturally evolving models and are constrained by things,

such as previous experience with similar systems and the structure of human

information processing systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

Van der Veer and Felt (1988) pointed out that the development of mental

models is generally considered to be strongly based on analogies and prior

knowledge related to the new situation. This process can be activated if the

teacher refers to existing semantic knowledge and schemata. The analogies stated

here appear to be the same idea as the conceptual models defined by Norman.

Based on Norman's model, Sein (1988) proposed a framework of the

mental model formation process in learning a system. Figure 2.1 is the framework.

Target System (t) Trainee's Mental Model M(t)

Mapping
via analogyInfluences

Trainer
designs

Influences

Trainee Characteristics

The system to be learned
(Electronic mail filing system)

A set of changing knowledge
states internal to the trainee

A representation of the system
external to the trainee

Prior Experiences

Cognitive traits
visual ability
learning mode

Motivation traits

Conceptual Model C(t)
analogical / abstract

Figure 2.1 Mental Model Formation Process (from Sein, 1988)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

The framework explicitly addresses the effects of individual differences in

the model formation process. It postulates that a novice user can form a mental

model of the system in the following three ways: (1) Mapping via usage. Users

can acquire a mental model of the system by using it. (2) Mapping via analogy:

Users can acquire a mental model of the system by drawing analogies from

similar systems that are familiar to them. (3) Mapping via training'. Users can

acquire a mental model of the system through a conceptual model that is provided

during training. A user can also form a mental model through multiple mappings.

For novices learning a new system, they can be trained with a conceptual model

of the system. This initial mental model can expand through using the system, and

the user's prior relevant experiences (analogy) may interact with both the training

and usage of the system.

It is obvious that conceptual models and individual differences, such as

prior relevant experiences and information processing structures, play crucial

roles in building mental models. The main concern of this investigation is how the

conceptual models provided by teachers and the information processing structures

(i.e., learning styles) possessed by students influence the formation of mental

models. These two factors will be examined later in the next sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

2.3 CONCEPTUAL MODELS

The previous section mentioned that people can be aided in building

mental models of the system they are learning by being taught with a conceptual

model. This section will describe the rationale of conceptual models as a teaching

(or training) tool in detail, followed by a review of related research in the Held.

Previous research (Gentner & Gentner, 1983; Kieras & Bovair, 1984;

Mayer, 1981, 1988) has provided evidence that relevant conceptual models can

facilitate students' learning and problem solving. These finding suggest that using

conceptual models in instruction can enable analogical learning and cognition; in

other words, when students acquire useful conceptual knowledge such as a

conceptual model they can use this knowledge for learning and thinking about a

new related domain (Norman, 1983). Rumelhart and Norman (1981) argued for

the central role of analogical learning in cognitive theories by emphasizing

accretion, "encoding new information in terms of existing schemata"; tuning,

"slow modification and refinement of a schemata"; and restructuring, "creating

new schemata" (pp. 335-336). The constructivists' view in science education has

also recognized the importance of accommodative learning, corresponding to

restructuring and tuning, as well as assimilative learning, corresponding to

accretion (Wittrock, 1985).

Ausubel et al.'s subsumption theory (1978) demonstrated that students

learn more when the new information being presented is preceded by a

presentation at a higher order of abstraction which creates a conceptual framework

into which the more specific information can be organized and anchored. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

leads to the instructional strategy known as 'advance organizer1. Mayer's

assimilation theory (1982) clearly demonstrated the effectiveness of using a

conceptual model as an advance organizer. Both Ausubel and Mayers' theories

provided the theoretical background of using conceptual models as teaching aids.

2.3.1 Ausubel's Subsumption Theory

Ausubel (1968, 1978) developed a theory of meaningful verbal learning

called subsumption theory. The main ideas of the theory are concerned with how a

person's prior knowledge and its organization determine learning. During

meaningful learning the person organizes, or "subsumes" or incorporates, the new

knowledge into old knowledge. New information can be better acquired and

assimilated if it can be tied to knowledge already held in long-term memory.

Within Ausubel's theory, the meaningful learning will occur if: (1) the learner

holds previous relevant knowledge, (2) the material is logical, and (3) the learner

intends to learn the material in a meaningful way. If these conditions are not met,

students typically memorize in an unmeaningful way, make few attempts to

incorporate the new material into their schemas, and usually forget quickly what

they do learn.

The primary practical implication of subsumption theory has become the

use of the advance organizer. The advance organizer is like a bridge, a linking of

new information with something already known. The foundation is similarities

between the old knowledge and the new. Without substantial similarities, the

advance organizer is impossible. The advance organizer is introduced before a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

lesson or a unit of instruction; that is, before the main body of presentation. It

provides the students with a structure for the new material. More than an ordinary

introduction or transition, the advance organizer is based on students' prior

knowledge.

Some researchers have found that advance organizers do improve learning,

and some have found that advance organizers do not. For their meta-analysis,

Luiten, Ames, and Ackerson (1980) examined 135 published and unpublished

studies relating to the advance organizer. They concluded that there was a small

but facilitative effect of the advance organizer on learning and memory. Further,

this effect extended across ages of subjects and subject matter fields. In addition,

they found that the effect increased with time; that is, when the instruction in the

experiments extended to several days or weeks as compared to a few hours, the

retention effects were stronger.

In Mayer's review (1979), he concluded that advance organizers should aid

learning for difficult-to-assimilate materials, which are unfamiliar, technical, or

otherwise difficult to relate to the learner's existing knowledge. He also pointed

out that advance organizers had been most effectively used in mathematics and

science topics. The target system of this investigation, recursion, meets all of these

criteria.

The characteristics of a conceptual model are similar to those of an

advance organizer. A conceptual model of a system is an analogy or a higher level

abstraction of the system; it captures the essential elements of the system. In other

words, similarities exist between the conceptual model and the system. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

conceptual model is always introduced before the main body of presentation to

give the learner an initial understanding of the system. And, conceptual models

are generally designed for complex systems that are difficult to relate to prior

relevant experiences. Therefore, a conceptual model can be considered as an

effective advance organizer for teaching purposes.

2.3.2 Mayer's Assimilation Theory

Mayer's assimilation theory (1981) provides a framework for the process

of meaningful learning (or assimilation to schemata). Meaningful learning is

viewed as the process in which the learner connects new material with knowledge

that already exists in memory. The process, which is shown in Figure 2.2, occurs

through the following three steps:

(1) Reception. The learner pays attention to the incoming information so that

it reaches short-term memory (as indicated by arrow a).

(2) Availability. The learner possesses appropriate prerequisite knowledge in

long-term memory to use in assimilating the new information (as

indicated by point b).

(3) Activation. Finally, the learner must use this prerequisite knowledge

during learning so that the new information may be connected with it (as

indicated by arrow c).

If any of these steps is not met, meaningful learning can not occur, and the

learner will be forced to memorize each piece of new information by rote.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

Stimulus Response

Long-Term Memory

Short-Term Memory

Some information processing components of meaningful learning.
Condition (a) is transfer of new information from outside to short
term memory. Condition (b) is availability of assimilative context
in long-term memory. Condition (c) is activation and transfer of
old knowledge from long-term memory to short-term memory.

Figure 2.2 Mayer's Assimilation Theory (from Mayer, 1981)

Mayer pointed out that novices generally have problems in step 2,

availability, because of they lack domain-specific knowledge. One technique for

improving their understanding of new information is to provide them with a

framework that can be used for incorporating new information. This technique is

aimed at ensuring availability of knowledge in long-term memory. The technique

proposed by Mayer for providing the appropriate prerequisite knowledge is the

use of conceptual models. For example, he used a pictorial conceptual model of a

computer (Figure 2.3) to teach novices a BASIC-like programming language and

the effect is significant (Mayer, 1981). The conceptual models used by him were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

concrete analogies for the computer system — a scoreboard for memory, output

pad for the output device, and ticket window for the input device. Mayer (1988)

concluded that conceptual models presented before instruction tend to enhance the

performance on transfer tasks which are creative or differ from those provided in

the training, especially for weaker programmers. The conceptual models appear to

serve as advance organizers for the new material to be learned.

Memory Scoreboard
A iJ a 4J

A5| a 6\ A7J A8J

Input Program Output
window LIST pad
IN PI

POINTER P2
ARROW •

OUT •

•

Figure 2.3 Mayer's Concrete Model of the Computer for a BASIC-like
Language

In summary, both Ausubel and Mayers' theories propose that external aids,

such as advance organizers and conceptual models, facilitate incorporation of new

information into preexisting knowledge. These external aids provide the basis for

forming an initial mental model of a target system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

23.3 Concrete and Abstract Conceptual Models

Several researchers (e.g., Bennett, 1984; Carroll & Olson, 1987; Young,

1983) have described different types of conceptual models used in mental model

research. For example, Carroll and Olson (1987) conclude that there are four types

of models called surrogates, metaphors, glass boxes, and network models. The

kinds of conceptual models investigated in the present investigation were concrete

and abstract models which were defined based on Gentner's Structure Mapping

Theory (SMT) (1983) and du Boulay et al.s' Black Box vs. Glass Box approach

(1981).

Structure Mapping Theory (SMT)

Gentner (1983) proposed the theory to explain the process by which users

map from a conceptual model to the target system. The central idea of the theory

is that an analogy is viewed as a relational structure that normally applies in one

domain (the base) can be applied in another domain (the target). The basic

assumptions of her theory are: (pp. 156-157)

1. Domains and situations are psychologically viewed as system of
objects, object-attributes and relations between objects.

2. Knowledge is represented as prepositional networks of nodes
and predicates. The nodes represent concepts treated as wholes;
the predicates applied to nodes express propositions about the
concepts.

3. Predicates are of two types. Attributes are predicates taking one
argument and relations are predicates taking two or more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

arguments. For example, if x and y are objects, COLLIDE (x, y)
is a relation, while LARGE (x) is an attribute. First order
predicates take objects as arguments, while higher-order
predicates take propositions as arguments.

Gentner (1988) distinguished four kinds of mapping (or analogy) in terms

of the number of object attributes and relational predicates being mapped from

base to target:

1. Literal Similarity. Many object attributes and relational predicates are

mapped from base to target.

2. Analogy. Only (at least mainly) relational predicates are mapped and

few or no object attributes can be mapped from base to target. The base domain

are concrete objects whose individual attributes must be left behind in the

mapping.

3. Relational Abstraction. Abstract relational structures of a base domain

are mapped. The object nodes of the base domain are generalized physical

entities, rather than particular concrete objects. Predicates from the abstract base

domain are mapped into the target domain; there are no nonmapped predicates.

4. Mere-appearance Match. Chiefly object attributes, but no or few

relational predicates, are mapped from base to target.

Table 2.1 shows these four kinds of mapping and their corresponding

examples. There are no strict distinction between the kinds of mappings. For

instance, as shown in Table 2.1, there is no principal difference between analogy

and relational abstraction. The latter is viewed as the analogy of a higher level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

Table 2.1 Kinds of Mapping in SMT

Mapping

No. of
attributes

mapped to
target

No. of
relations

mapped to
target

Example

Literal Similarity Many Many The K5 solar system is like our
solar system.

Analogy Few Many The atom is like our solar
system.

Relational Few* Many The atom is a central force
Abstraction system.

Mere-appearance Many Few A sunflower looks like the sun.

* Relational abstraction differs from analogy and the other mappings in
having few object attributes in both the base and target domain.

Relational abstraction is said to possess the most inferential power in the

learning process. Literal similarities and mere-appearance match are considered

as much less valuable in this respect, but access to the analogies is much more

likely with these two kinds of mapping. Analogy is somewhere between literal

similarities and relational abstraction. It facilitates the implementation of high

inferential power because mainly relational structures are mapped. In addition,

object attributes may ease access to analogies (Duit, 1991). Analogy and relational

abstraction are considered most useful as teaching tools to bridge the prior and

new knowledge.

According to the theory, analogy and relational abstraction are really

opposite ends of the same continuum. They depict the target with varying degrees

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

of concreteness. In fact, Gentner termed relational abstraction as abstract analogy.

The basic difference of these two mappings lies in the concreteness of the objects

in the base domain. For example, in Figure 2.1, the solar system is more concrete

than the central force system. Thus, the conceptual models corresponding to

analogy and relational abstraction mappings are termed as concrete models (or

analogical models in some literature) and abstract models, respectively, according

to the concreteness of their base domain.

A common example for these two models is given in teaching computer

file systems. The analogy between a filing cabinet (base) and the computer file

system (target) is clearly a concrete model. The basic structure and functions of a

filing cabinet with labeled folders are mapped onto the structure and functions of a

computer file system. The tree structure diagram (base) used to describe the

concept of the hierarchical file system and the methods for traversing it (target) is

considered as an abstract model.

Black Box vs. Glass Box

The idea of using conceptual models for introducing computer concepts

was also developed by du Boulay et al. (1981). They suggested that too often

teachers use a black box approach when teaching about computers. In this

approach students are told not to be concerned about what happens inside the

computer, but rather to look at each segment or function as a black box which has

a set of inputs, a process, and a set of outputs. The process need only be presented

in terms of the inputs and outputs without regard to what actually happens in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

box. This approach may lead to programs that run, but it will hardly lead to an

understanding of how a computer works.

Mayer (1979) argued for the advantages of explaining the process which

takes place within the black box using an idealized set of parts. The parts need

only be at a level of detail that will allow the processes to be explained. The level

of detail for appropriate teaching is what he calls "transaction level". This is called

as glass box approach. Du Boulay et al. (1981) suggested two important

characteristics of programming languages for novices were needed in the

approach: (1) Simplicity. It should consist of a small number of parts that interacts

in ways that can be easily understood, possibly by analogy to other mechanisms

with which the novice is more familiar. (2) Visibility. Novices should be able to

imagine the selected parts and processes of the model in action.

A common glass box approach used in most introductory computer

textbooks is to simulate the action of program statements on a conceptual model

of the computer system. This approach offers the learner a view of the internal

operation of the computer and the way the system reacts to programs. The level of

detail must be sufficient to illustrate the concept to be learned, but should not

introduce complexity that interferes with understanding the concept. For example,

in describing the assignment statement, the "mailbox" analogy is often use to infer

the concept of "computer memory location". The mailbox model is not as detailed

as that of electronic flip-flops holding charges representing bits in the computer

memory. Viewed at the electronic level, the concept of assigning a value to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

variable is too complex. The greater level of detail would add more confusion

rather than help in understanding the concept.

While revealing appropriate details may improve understanding, obscuring

detail through abstraction may be equally important. Kurtz and Kemeny (1985)

proposed that programming should be taught to novices so that they does not have

to aware of how the machine functions. Teaching programming from the concept

of abstraction represents a black box approach. Detail is kept from the learner's

current consideration in order to facilitate learning. Procedural abstraction permits

the programmer to consider a complete task as a single procedure. Similarly, data

abstraction permits the programmer to consider data structures as entities,

independent of machine level representation. It is believed that experts generally

use abstraction as a means for simplifying the problem solving process.

The glass box approach shows the 'visible' process of the system in a

simplified conceptual model to the learner. Mayer (1981) termed this kind of

approach as a concrete model. While the black box approach which hides the

details through abstraction is obviously an abstract model.

Conclusion

Based on the SMT and Glass Box vs. Black Box approach discussed

above, it can be concluded that a concrete model is a concrete analogy of a target

system in terms of another system. It shows the internal process of the system at

an appropriately detailed level. Examples of concrete models are concrete objects

(e.g., filing cabinet, and solar system in Table 2.1) or notational machines (termed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

by du Boulay et al., 1981) such as Mayer’s pictorial model of a computer (See

Figure 2.3). An abstract model is a synthetic representation of the underlying

conceptual structure of a target system. The internal details of the system are

hidden through abstraction. Examples of abstract models are abstract objects (e.g.,

tree structure diagram, and central force systems in Table 2.1) and logical or

mathematical models.

The central theme of a conceptual model is the analogy between the model

and the target system. Care needs to be taken in the use of analogies. The

misapplication of an analogy is one of the most common mistakes made by

novices. The problem arises when a learner tries to extract more structure or

relationships from an analogy than is warranted (du Boulay, 1986).

Halasz and Moran (1982) suggested that a concrete model (analogical

model in his term) is effective for communicating complex concepts to novices

when used as a literary metaphor whose function is simply to illustrate some

salient points of the target system, but it is dangerous when used as a way of

reasoning about computer systems. They suggested that reasoning is much better

done with an abstract model. The basic problem with a concrete model is that it

attempts to represent a conceptual structure with familiar concepts that are

inappropriate for reasoning about computer systems. Whereas, an abstract model

directly presents the underlying conceptual structures of computer systems to the

user, providing him/her with an appropriate basis to reason about the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

However, Mayer views concrete models differently. He showed repeatedly

the effectiveness of using concrete models. In his conclusion, Mayer (1982) stated

that:

When appropriate models are used, the learner seems to be able to
assimilate each new statement to his or her image of the computer
system. ... If the goal is to produce learners who will be able to
come up with creative solutions to novel problems, then a concrete
model early in learning is quite useful, (p. 26)

It seems both of them agree that concrete models are more useful for

novices learning complex system in the early learning stages. But they have

different views about how far the concrete models can be carried out in the

learning process. Mayer believes that concrete models are helpful in the long run

while Halasz and Moran disagree. They feel that only abstract models are useful

in the long run. There are no general agreement about which type of conceptual

model is better than another. The conclusions may vary because of the

concreteness of the models (models may show different degree of concreteness),

the timing of using the models, or the characteristics of the target system. Several

research results in this Held will be reviewed in the next section.

23.4 Related Research

The literature on the study of mental models is rich. Previous research has

been mostly on the effects of conceptual models in building mental models of

physical devices and abstract concepts. A comprehensive review is provided in

Gentner and Stevens' book, Mental Model (1983). The review here will focus on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

research related to the effectiveness of conceptual models in teaching/training

computer related knowledge.

Mayer’s series of research (1981, 1982, 1985, 1987, 1988) has provided

experimental evidence that the use of concrete conceptual models promotes

learning of programming. For example, he (1981, 1982) provided students with a

diagrammatic model which incorporated a variety of concrete metaphors (e.g.,

input as a ticket window and storage as a file cabinet). Students who were exposed

to this model before studying a training manual were later able to perform better

on both programming and recall tasks. He concluded that a concrete conceptual

model which acts as an advance organizer will help novices come up with creative

solutions to novel problems, especially for low ability programmers.

Rumelhart and Norman (1981) used a composite of three concrete models:

a secretary metaphor, which was used to explain that commands can be

interspersed with text input; a card file metaphor, which was used to describe the

deletion of a single numbered line from a file; and a tape recorder metaphor,

which was used to convey the need for explicit terminators in files. The

performances were good for all the three models. They also found that there were

several cases in which a subject would employ one of the models when another

was appropriate. In the same domain, Foss, Rosson, and Smith (1982) provided

students learning to use a text editor with a concrete conceptual model that used a

file folder as the metaphor. They found that students who were provided with the

concrete model learned more in less time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

Borgman (1983/1984) studied the effect of training novice users of a

computerized information retrieval system with conceptual models. The

experimental group was trained with a concrete conceptual model that described

the retrieval system in terms of a library catalogue while the control group was

trained procedurally in the mechanics of the system. The model trained group and

the control group performed equally well on simple, procedural tasks, but the

model trained group performed better on complex tasks that required

extrapolation from the basic operations of the system.

Kieras and Bovair (1984) taught two group of students how to operate a

simple device. One group learned a set of operating procedures for the device by

rote, and the other learned a concrete conceptual model of the device (a block

diagram representation) before receiving identical procedure training. The model

group learned the procedures faster, retained them more accurately, executed them

faster, and inferred the procedures more easily than did the rote group. They

concluded that the useful how-it-works knowledge is the knowledge about the

internal workings of the system that allows the user to infer exactly how to

operate the device.

Bayman and Mayer (1984) trained calculator users with two different

types of abstract conceptual models. They found the two model groups adopted

very similar strategies that lead to accurate solutions of the experimental tasks.

However, the control group, which had no model training, adopted random

strategies and, were less accurate than the model trained groups. Halasz (1985)

had similar findings. He taught students how to use a calculator using either a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

step-by-step action sequence to do standard calculations or instructions which

included a verbal model of how the internal registers, windows, and stacks

worked. They found that performance on standard tasks was identical for the two

groups, but that the group that learned the model performed better on novel tasks.

Galletta (1985/1986) provided a group of novice users with a concrete

model that described an electronic mail system in terms of a hotel telephone

system. Their performance in using the mail system was compared against the

performance of a control group who received procedural instruction. The concrete

model group did not perform better than the control group.

Schlager and Odgen (1986) incorporated both a concrete model

(conceptual model in his term) and a abstract model (procedural model in his

term) in the training materials for teaching students how to form successful

queries in a database. Three groups of subjects received either a concrete model,

abstract model, or neither (the control group) in addition to basic instruction. The

two model groups solved the problems faster than the control group, but did not

differ from each other.

Bennett(1984) compared the effectiveness of two types of interface design

for a computerized auditory database system. He found that the concretely trained

group performed better than the abstractly trained group in simple tasks, but the

effect was in the reverse for the complex tasks. Sein et al. (1987) had similar

findings in training novices to use an electronic mail filing system.

Sein (1988) again investigated the effectiveness of two types of conceptual

models (concrete and abstract models) in training novices using an electronic mail

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

filing system. The concrete conceptual model represents the system in terms of an

office steel filing cabinet, while the abstract conceptual model represents the

system in terms of a hierarchical diagram. The performance was not significantly

different between these two model groups. However, they observed significant

interaction effects between the conceptual models used in training and individual

differences — learning style and visual ability. The individual difference effects

were also observed in Sein et al. (1987).

Table 2.2 is the summary of the 12 studies reviewed. The first nine studies

investigated the effectiveness of using conceptual models in teaching/training.

Almost all of them supported the idea that the conceptual models were useful and

better than the methods provided for the control group. Only Galletta's study

(1985/1986) did not agree. Several of the studies (Mayer, 1981, 1982, etc.;

Borgman, 1983/1984; Halasz, 1985) further concluded that the effects were

significant in creative and complex tasks. Assuming the conceptual models were

helpful, the last four studies in Table 2.2 compared the effects between two

different types of conceptual models - concrete and abstract. Their results were

inconclusive. Bennett (1984) and Sein et al. (1987) found the effects were varied

and depended on the complexity of the tasks. Schlager and Ogden (1986) and Sein

(1988) found no significant difference between the two types of models. However

the interaction effects between the types of conceptual models provided and

individual differences were found in both Sein et al. (1987) and Sein’s (1988)

studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

Table 2.2 Related Research in Conceptual Models

Study
Target

Domain
Model Type

Studied Results

Mayer (1981,
1982, etc.)

Programming Concrete The model groups performed better
than the control group, especially in
creative and novel tasks.

Rumelhart &
Norman (1981)

Text Editor Concrete The concrete models were useful.

Foss et al. (1982) Text Editor Concrete The model group learned more in
less time.

Borgman
(1983/1984)

Information
Retrieval

Concrete The model group performed better
on complex tasks.

Kieras & Bovair
(1984)

Control
System

Concrete The model group performed better
than the control group.

Bayman &
Mayer (1984)

Calculator Abstract The model groups performed more
accurately than the control group.

Halasz (1985) Calculator Abstract The model group performed better
on novel tasks.

Galletta
(1985/1986)

Mail System Concrete The model group did not perform
better than the control group.

Schlager &
Ogden (1986)

Database
Querying

Concrete/
Abstract

The two model groups perform
better than the control group. No
difference was found between the
two model groups.

Bennett (1984) Auditory
Database

Concrete/
Abstract

The concrete model group
performed better than the abstract
model group in simple tasks. The
effect is reversed in complex tasks.

Sein et al. (1987) Mail Filing
System

Concrete/
Abstract

Same as above.

Sein (1988) Mail Filing
System

Concrete/
Abstract

No difference were found between
the two model groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

Of all the studies reviewed, only Mayer's studies investigated the effects of

conceptual models in programming domain. He repeated showed the effectiveness

of concrete models in teaching novices programming. However, Mayer's series

research did not explore more complex conceptual knowledge involved in large

program segments such as the concept of a loop or the concept of a data structure.

Neither did he investigate the effects of abstract models. The present investigation

studied the effects of both types of models and individual differences, which was

similar to Sein's study, but the target domain was in a more complex conceptual

knowledge domain — recursive programming. Learning styles, an important

aspect of individual differences, is reviewed in the next section.

2.4 Cognitive Learning Styles

Individual differences among students present a pervasive and profound

problem to educators. Students of any age will differ from one another in various

intellectual and psychomotor abilities and skills, in both general and specialized

prior knowledge, in interests and motives, and in personal styles of thought and

work during learning. These differences, in turn, appear directly related to

differences in the students' learning process. This implies that individual

differences somehow condition students' readiness to profit from the particular

instructional environments (e.g., conceptual models) provided. Learning is viewed

as a process of mental model formation. Therefore, individual differences in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

conjunction with conceptual models should play a important role in the formation

of mental models.

In his review of present knowledge about individual differences, Snow

(1986) stated that cognitive learning styles were one of several personal constructs

that deserve to be further explored. This investigation will explore the effects of

learning styles in aiding the formation of mental models.

2.4.1 Learning Styles Theory

Learning styles are characteristic cognitive, affective, and
physiological behaviors that serve as relatively stable indicators of
how learners perceive, interact with, and respond to the learning
environment (NASSP, 1979, p. 4)

Learning styles and cognitive styles have often been used synonymously

in the literature although they are not the same. Learning styles, in fact, is the

broad term which includes three dimensions: cognitive, affective, and

physiological styles.

Cognitive styles are information processing habits representing the

learner's typical mode of perceiving, thinking, problem solving, and remembering

(Messick, 1976). Each learner has preferred ways of perception, organization, and

retention that are distinctive and consistent. The difference between cognitive

styles and general cognitive abilities are as follows: Styles focus on "how I learn"

and abilities focus on "what I learn"; style is bipolar or on a continuum; abilities

are unipolar or measured with a single score. Examples of cognitive styles are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

reflection vs. impulsivity and field independence vs. field dependence (analytical

as opposed to non-analytical way of experiencing the environment).

Affective styles involve personality and emotional characteristics related to

areas such as persistence, locus of control, responsibility, motivation, and peer

interaction. Do you prefer working by yourself or with peers? How do you

respond to verbal or token reinforcement? Examples of affective styles are level

of anxiety and competition vs. cooperation.

Physiological styles are biologically-based modes of response that are

founded on sex-related differences and personal nutrition and health. Are you a

morning, afternoon, or night person? Do you need frequent breaks? Examples of

physiological styles are time-of-day rhythms and heath-related behavior. (Keefe,

1987)

Like intelligence or general ability, learning styles come as a result of our

heredity, experiences, and environment (Kolb, 1984). They are a result of nature

and nurture (Gregorc, 1984). While learning styles are considered to be consistent

patterns of behavior and are relatively stable traits over time, they can be modified

with age and experience. For example, with maturation, learning styles tend to

move to greater abstraction and tend to become more analytical and reflective.

Unlike intelligence or general ability, however, styles are value-free (Messiah,

1976; McCarthy, 1980). No style is better than another. Nor is learning by doing

necessarily better than learning by listening. These styles are simply different.

However, some styles may be more effective than others in certain

situations. Thus, when an individual learns, the style may be unique to the task or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

it may duplicate a previous experience. McCarthy (1980) found that individuals

who preferred learning styles involving listening to lectures are usually

accommodated in traditional classrooms. Carrier, Williams, and Dalgaard (1988)

found that learning styles were a prediction of students' confidence and perception

in their notetaking skills in a college economics course.

The instructional implication for teachers is that the more we know about

students' learning styles, the more effective and efficient will be the teaching and

learning process. Reiff (1992) states that there are several reasons for teachers to

learn about students' learning styles: (1) reducing frustration for students and

teachers, (2) improving students' self-concept and achievement, (3) helping

teachers to plan and manage more appropriate lessons, (4) increasing variability

and flexibility of students' learning styles, and (5) improving communication

between teachers and students. The relationship between students' learning styles

and the instruction provided, i.e. (3) and (5), is the main concern of this

investigation.

The vast majority of research on personality-related learning variables has

been in the area of cognitive styles (Keefe, 1987). Researchers in mental models

(Norman, 1983, 1987; van der Veer & Felt, 1988) have pointed out that style of

information processing (i.e., cognitive styles) and prior knowledge were the two

main individual difference features that affected the formation and acquisition of

mental models. Individual styles of information processing not only result in

preferences for different modes of presentation of learning materials and of

analogies, but also lead to individual differences in the organization of semantic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

knowledge. This investigation focuses on the cognitive aspect of individuals'

learning styles.

2.4.2 Kolb's Experiential Learning

In order to measure cognitive learning styles in this investigation, Kolb's

Leaming-Style Inventory 1985 (LSI-1985) was chosen. LSI-1985 is based on

Kolb's experiential theory which views learning as a discovery process that

incorporates the characteristics of problem solving and learning (Kolb, 1984,

1985). Kolb believes that it is the combination of how people perceive and how

they process information that forms the uniqueness of their own learning style,

i.e., the most comfortable and productive way for them to learn. More specifically,

there are two main dimensions of the learning process by which people leam.

Concrete-Abstract dimension — How people perceive new information. In

new situations, some people prefer to sense and feel their way, while others prefer

to think their way through. Those who sense and feel tend to rely on CONCRETE

EXPERIENCE (CE). They perceive information in concrete form and use intuition.

Others who think their way through focus more on symbolic representation or

ABSTRACT CONCEPTUALIZATION (AC) of new information. They use reasoning

and analytical skills to perceive information.

Active-Reflective dimension - How people process what they perceive.

Some people, who favor REFLECTIVE OBSERVATION (RO), watch or reflect on

their experiences while others become active and are doers involved in ACTIVE

EXPERIMENTATION (AE).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

Kolb views AC and CE as being the opposite ends of a continuum of

abstract conceptualization of information in learning. In other words, abstract

conceptualizes (abstract learners) have an opposite learning mode to those who

favor concrete experience (concrete learners). The same case is with the other

continuum, i.e., active experimenters and reflective observes. Kolb has defined

four learning styles (Figure 2.4) corresponding to each combination of preferred

ways to perceive and to process new information. Four learning styles are defined

based on a multi-dimensional model. The theory's learning mode dimensions can

also be categorized under the single learning style continuum model. For example,

along the AC-CE dimension, an individual can be categorized as either an abstract

learner or concrete learner. The same case is with the AE-RO dimension.

Concrete Experience
(CE)

Accommodator Diverger

Active
Experimentation

(AE)

Reflective
Observation

(RO)

Converger Assimilator

(AC)
Abstract Conceptualization

Figure 2.4 Kolb's Four Learning Styles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

Kolb argues that because of the experiential nature of learning, different

learning situations are necessarily different experiences. An individual may prefer

one style in one situation and a different style in another. However, even if an

individual's learning style varies with the situation, it will remain constant within

a particular context. For example, while learning programming, an individual's

learning style is likely to remain the same. Moreover, although an abstract learner

may choose to employ concrete experience in a situation, he or she is more likely

to be "less concrete" than someone who prefers concrete experiences in the same

situation. LSI is therefore a relative measure of difference among individuals.

Kolb's theory has been widely applied in many research studies (e.g.,

Atkiston, Murrell, & Winters, 1990; Geiger, 1991; Pinto & Geiger, 1991;

Reading-Brown & Hayden, 1989) for pedagogical purposes. His Leaming-Style

Inventory is considered better than other similar instruments in learning styles

research (Karrer, 1988). The reliability and validity issues of the LSI-1985 will be

discussed in the Instrumentation section of Chapter 3.

2.4.3 Learning Styles and Conceptual Models

Kolb's theory predicts that students with different learning styles respond

differently to various teaching methods and that instructional strategies should

match the learning styles of students. Some students may grasp abstract concepts

readily while others need concrete imagery to learn. Individuals with different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

learning styles tend to learn differently from different teaching methods

(Catalanello & Bremenstuhl, 1978; McCarthy, 1980).

There appears to be some connection between the conceptual models

provided in instruction and the abstract-concrete (AC-CE) dimension of Kolb's

learning styles. Individuals with an abstract learning style tend to discover the

rules and structures inherent in an abstract model. These individuals take an

analytical conceptual approach when learning; they rely heavily on systematic

planning and develop theories and ideas to solve problems. Thus, an abstract

model seems more helpful for abstract learners in the learning process.

On the other end of the continuum are individuals who prefer a concrete

learning style. They take an experiential-based approach when learning and tend

to rely more on their feeling and experiences than on a systematic approach to

problems and situations. An abstract model is highly unlikely to be part of their

relevant experience. Whereas, a concrete model seems very likely to be so.

Therefore, a concrete model is more appropriate for concrete learners.

There is evidence (Bostrom et al. 1987; Sein & Bostrom, 1989) that

abstract learners benefit more from an abstract model and are hampered by the

concrete model. Concrete learners, on the other hand, benefit more from a

concrete model.

The active-reflective (AE-RO) dimension of Kolb’s learning styles deals

with active involvement aspects in learning and is less related to any interaction

with the provided conceptual models. This dimension was not investigated further

in this study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

2.4.4 Related Research

Many recent studies attempt to correlate individuals' cognitive learning

styles with the learning in computer related domains. For example, van der Veer

and Felt (1988) investigated students' preferred style of representation of

information (image or abstract representation) in learning an office system. No

relation between the styles and mental models could be detected because of the

small sample size (N = 10). However, they concluded that the learning styles as

measured on the dimension of imager/nonimager seems to be relevant to the

resulting mental model, especially regarding correctness and completeness.

Davidson, Savenye, and Orr (1992) studied the relationship among

learning styles (as defined in Gregorc, 1984) and performance measures for

computer concepts and application skills. Students who prefer the world of

abstraction and symbols (abstract learners) achieved significantly higher in total

course points; while those students who experience the world of reality through

their imagination and feelings (concrete learners) earned significantly lower total

course points. The major difference was found in programming related activities.

Several studies relate the performance in programming to cognitive

learning styles. For instance, Corman (1986) surveyed the correlation between

students’ learning styles (as defined by Kolb, 1985) and their success in an

introductory COBOL course. He found no significant correlation between

students' learning styles and their success in the introductory programming course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

However, Cavaiani (1989) and van Merrienboer (1988, 1990) found

cognitive learning styles did play a role in students' learning programming.

Cavaiani (1989) investigated the influence of cognitive styles (field dependence-

independence, as measured by Group Embedded Figure Test, GEFT) on the

component programming skill of debugging. The results showed that individuals

possessing a global cognitive style will be at a disadvantage when involved in the

cognitive task of program comprehension and debugging. And, the analytic

problem solvers perform better on diagnostic tasks than global (non-analytic)

problem solvers.

Van Merrienboer (1988) conducted a study to explore the relationship

between the cognitive style (reflection-impulsivity, as measured by Matching

Familiar Figures Test, MFFT) and achievement in an introductory programming

course. Reflectives were found to be superior to impulsives in their scores on a

program comprehension test. No significance difference were found in scores on

factual knowledge of programming language features and syntax. In his other

research (1990), he found reflectives profit more from an instructional strategy

that emphasizes the completion of existing programs, and impulsives from the

generation of new programs.

Sein and Bostrom (1989) examined the influence of learning styles on the

efficacy of conceptual models in learning a mail filing system. They found that

abstract learners benefit more from an abstract model but are hampered by the

concrete model. Concrete learners, on the other hand, benefit more from a

concrete model. In the Bostrom et al.'s (1987) study, one of their four experiments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

provided the same findings, but three of them did not show any significant

interaction effect.

In general, both Bostrom et al. (1987) and Sein and Bostrom (1989) found

that abstract learners performed better than concrete learners on their experimental

tasks and Zuboff (1988) had similar findings. Zuboff conducted an exhaustive

study of factory workers adapting to computer-based control system in

manufacturing machinery. She concluded that successful workers needed to

develop abstract-thinking skills in order to develop accurate mental models of the

system and to use their model. That was they needed to think through a process or

problem rather than just physically acting on it.

Most of the studies reviewed suggests that there are relationships between

individuals' cognitive learning styles and their performance in learning computing

systems. The abstract or analytical learners tend to perform better than concrete or

non-analytic learners in programming tasks. However, the interaction effects

between students' learning styles and the conceptual models provided are

inconclusive.

2.5 Teaching Recursion

There are many complex concepts that students encounter when learning

computer science. Recursion, a powerful and elegant control structure of many

computer languages, represents one of these fundamental and complex computer

science concepts (Ford, 1982; Martin, 1985). Understanding recursion is thought

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

to be central in a more complete understanding of complex data structures and

program control (Rohl, 1984). McCracken (1987) argued that recursion is not an

advanced topic, but rather "recursion is fundamental in computer science, whether

understood as a mathematical concept, a programming technique, a way of

expressing an algorithm, or a problem-solving approach" (p. 3). Recursion is also

regarded as an exciting and powerful concept that can invoke a feeling of playing

with infinity (Pampert, 1980; Turkle, 1985).

In spite of the importance of recursion, computer science educators have

found that recursion is a very difficult concept for students to learn and teachers to

teach (Anderson, Farrell, and Sauers, 1984; Ford, 1982, 1984; Henderson &

Romero, 1989). It appears that students' response to recursion is often avoidance

(Kurland & Pea, 1983; Widenbeck, 1989).

2.5.1 Problems in Learning Recursion

Recursion is used as a control structure in computer programs. It provides

a means for repeating a process, similar to a loop construct. Block-structured

languages such as Pascal, usually implement recursion by repeating execution of a

function or procedure. A function or procedure can suspend its own action

temporally, restart itself possibly with new input data, and when finished resume

the suspended action and continue to completion. A recursive function or

procedure is characterized by a call to itself. A detail description of recursion is

located in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

What makes recursion so difficult to learn? It may be due to three factors:

lack of everyday analogies, limitation of human's short-term memory (or working

memory), and complexity involved in recursive algorithms (Er, 1984; Pirolli,

1986b; Pirolli & Anderson, 1985).

When students learn programming concepts, they already have a lot of

knowledge about how to perform everyday activities and how to use language.

The analogies they make from their previous experiences probably help them to

get some initial understanding of the programming concept (Bonar & Soloway,

1985). In the case of recursion, the concept is usually completely novel for

novices and there are very few everyday analogies that exists. Those which are

frequently used analogies, such as seeing one's own image reflected in a row of

mirrors, convey the idea of infinity associated with the recursion, but do not

convey the idea of recursion as a series of processes for solving a problem. Pirolli

and Anderson (1985) argued that the lack of everyday analogies is what makes

recursion so difficult to learn.

The problem in learning recursion may be also indirectly related to the

general difficulty people have with executing recursive mental procedures. For

example, people find it difficult to understand recursive linguistic structure such

as The boy is thinking that the girl is thinking of him thinking o f her (Eliot, Lovell,

Dayton, & McGrady, 1979). It seems that the human mind cannot suspend one

process, perform a recursive calculation, and return to the original suspended

process. Such processing requires that partial results be maintained and

distinguished in memory. It is a well-known psychological fact that the human

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

short-term memory has a capacity limited to about seven "chunks" or items.

Without external aids, the short-term memory simply can not cope with the huge

amount of information generated by a recursive algorithm (Er, 1984; Pirolli,

1986b).

Er (1984) argued that it is not because the concept of recursion is difficult

to grasp, but because recursive algorithms, by definition, are implemented with

procedures or functions that rely on parameter passing mechanisms such as call-

by-value or call-by-reference, together with global and local variables, to achieve

their effects. Therefore, to comprehend recursive algorithms, one needs to

understand three different aspects of computer programming: recursion, parameter

passing mechanisms, and global versus local variables, all of which complicate

the learning of the recursion concept itself.

Previous research has found that students tended spontaneously to develop

an incorrect mental model of recursion. The most popular misconception was to

represent recursion as a loop structure that iterates through a problem. Iteration,

theoretically, a special case of recursion, is often introduced to students prior to

recursion in an introductory programming course. Kurland and Pea (1983)

collected think-aloud protocols and hand simulations from students as they tried to

understand recursive programs in LOGO. Many of the students formed a mental

model of recursion as a form of looping, rather than seeing it as the suspension of

the current process and the passing of control to a completely new version of the

same process. There are different kinds of recursion, and the incorrect mental

model of recursion as looping may sometimes lead to correct results in some kind

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

of recursion (i.e., tail-recursion). Because it did not always lead to incorrect

results, the fault in the mental models was difficult for students to identify. Other

researchers (Anzai & Uesato, 1982; Bhuiyan, Greer, & McCalla, 1991; Greer,

1987; Kahney 1983) found this same incorrect mental model of recursion and

other incorrect models as well.

However, in general, research comparing the acquisition of recursive and

iterative procedures has shown that novices are able to handle recursive concepts

once they have learned iteration, but not vice versa (Anzai & Uesato, 1982;

Kessler & Anderson, 1986; Wiedenbeck, 1989). Iteration is a common

phenomenon in our everyday lives. The availability of real world analogies

facilitates the development of a mental model of control flow in iteration. This

mental model can serve as the basis for understanding recursion. Recursion, on

the other hand, is a more complex mechanism and there are no good analogies that

novices can draw on in formulating a mental model. Kessler and Anderson (1986)

concluded that the reason for novices' difficulty in understanding flow of control

in programming lies in their inability to develop adequate mental models of the

task. Therefore, learning iteration prior to learning recursion is not the main

argument for the development of incorrect loop mental model.

Thus, how to help novice students to develop an adequate mental model of

recursion is the critical factor in teaching recursion. In a domain such as recursion,

which is complex and does not have everyday analogies, using conceptual models

as advance organizers appears to be an appropriate approach in instruction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

2.5.2 Models in Teaching Recursion

In teaching recursion, the ability to read and understand recursive

programs and the ability to write a recursive algorithm to solve a specific a

problem are generally considered the two basic skills introductory students must

learn as reflected in the introductory computer science textbooks (e.g., Aho &

Ullman, 1992; Dale & Lilly, 1991; Dale & Weems, 1991; Koffman, 1992). These

two skills actually represent two stages of learning recursion: first, knowing what

recursion is and how it works and then learning how to construct a recursive

algorithm. Based on these two basic skills, researchers in this field have different

perspectives of how to teach recursion. Some (Bowman & Seagraves, 1985; Lee

& Mitchell, 1985; Mumane, 1991) emphasize the importance of knowing the flow

of control of recursion and make less effort to explain how to derive a recursive

solution; they prefer a glass box approach (concrete model) to demonstrate how

recursion works. Some (Ford, 1984; Henderson & Romero, 1989; Pirolli,

1985/1986a) consider that the implementation details are trivial and it is better to

explain this computer science concept in more abstract ways. They prefer a black

box approach (abstract model) in addressing how to design a recursive algorithm.

The following are several conceptual models that are widely used in the

field. The first three can be categorized as concrete models, and the remaining two

as abstract models. The categorization is based on the relative concreteness of

their base domain (as defined in SMT) and the detailed level the internal process

shown in the models. Other models can be found in Lee and Mitchell (1985) and

Mumane's (1991) review.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62

Russian Dolls. (Bowman & Seagraves, 1985; Dale & Weems, 1991) A

Russian Doll can be taken apart into many successively smaller dolls of the same

shape. It displays the process of invoking a smaller size of itself (recursive case)

and eventually the recursive process stops when the last doll does not contain

another (base case). This is considered a concrete model of recursion and better

used as a literary metaphor (Halasz & Moran, 1982), whose function is simply to

make a point in transferring the ideas of recursion, and not as tools for reasoning.

Once the point is made the metaphor can be discarded.

Process Tracing. (Dale & Weems, 1991; Helman & Veroff, 1986;

Koffman, 1992; Kruse, 1982) Process tracing focuses on tracing the process

generated by recursive functions; that is, modeling the mechanism of recursion

from the perspective of the scopes of procedures. This model is clearly a concrete

model, but the degree of concreteness may be varied depending on the method

used in tracing the process. The block tracing diagram (Appendix F) method

which traces the flow of control and data among recursive calls by a block

diagram, is more concrete than the mathematical tracing method. A mathematical

tracing method, on the other hand, traces the recursive process by mathematical

equation. It does not explicitly show the process of the recursive mechanism. For

example, the tracing of the factorial function in calculating F(4) is presented as:

F(4) = 4 X F(3) = 4 X 3 X F(2) = = 24.

Stack Simulation. (Dale & Lily, 1991; Greer, 1987; Tenenbaum &

Augenstein, 1986) This approach is the one traditionally used in many textbooks.

Recursion is introduced in terms of computer architectures for execution of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

recursive programs. Call to functions or procedures are traced with explicit

reference to the system stack mechanism that is actually used in the Pascal

implementation of recursion. This model is the concrete representation of the

system stack, and in some cases is explained to the detailed level of activation

records and return addresses. Often the concepts of stacks and activation records

are new to students learning recursion and the local variables, procedure

invocations, and procedure arguments must be manipulated in constructing the

system stack. It is argued that this approach may add unnecessary burden to the

learning of recursion (Ford, 1984; Greer, 1987). This approach, in fact, is a

process tracing model but with a more concrete base domain.

Mathematical Induction. (Aho & Ullman, 1992; Ford, 1984; Greer,

1987; Henderson & Romero, 1989) This approach introduces recursion in terms

of the mathematical basis for its correctness; that is, proof by induction. There are

many similarities between recursion and mathematical induction. In both

techniques, a base case(s) must be established first. Then, an assumption

regarding the correctness of the solution for a particular size of the problem is

made (inductive hypothesis), and then an extension to the next larger size of the

problem is made. The base case and inductive hypothesis of mathematical

induction may be translated directly into the recursive definition for a problem.

Formulating a recursive algorithm is equivalent to formulating a mathematical

induction.

One flaw of this approach is that students may or may not be familiar with

mathematical induction before learning recursion. Ford (1984) suggested that a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

brief introduction of the concept may be necessary before teaching recursion and

that it would be more appropriate to "argue" the correctness of a recursive

algorithm rather than to "formal prove" it in the introductory level. This approach

emphasizes the development of recursion as an instance of mathematical

induction, seeks to improve relational understanding and consequently transfer of

knowledge. It ignores the implementation details of recursion and is obviously an

abstract model.

S tructure Template. (Greer, 1987; Pirolli, 1985/1986a, 1986b) This

model provides novice programmers with samples of recursive programs and

describes the recursive algorithm in terms of base case(s) and recursive case(s).

Pirolli and Anderson pointed out that knowing the underlying structure and

functionality of recursive programs facilitated the induction skill needed for

programming recursion more than knowledge of how such functions get executed.

They concluded that the crucial factor in learning recursion seems to be the

knowledge that recursive functions can be characterized as having base cases

(“terminating case” in their term) and recursive cases (“recursive cases and

recursive relations'" in their term). To solve a recursive problem is similar to

filling out the slots of base case(s) and recursive case(s) in a structural template. A

basic recursive template may look like:

IF cbase condition> THEN <base action> (* Base Case *)
ELSE <recursive action> (* Recursive Case *)

However, some researchers (Bhuiyan, Greer, & McCalla, 1989; Greer,

1987) suspected that students might try to memorize the templates used in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

different situations without a much deeper understanding of recursion. They

observed that students tend to try to fill template slots on a trial and error basis.

This approach is considered an abstract model.

2.5.3 Related Research

This section will review mainly experimental research related to teaching

recursion. There appear to be three major issues that have been investigated:

mutually influence on learning recursion and iteration, learning recursion from

examples, and comparing effects of different conceptual models.

Kessler and Anderson (1986) looked at the transfer of skill between

writing iterative and recursive computer programs. Their experiments involved 32

novice programmers using SIMPLE, a LISP-like language. They found positive

transfer from writing iterative functions to writing recursive functions, but not

vice versa. A subsequent protocol study of students’ problem solving process

revealed that subjects had a poor mental model of recursion that they developed

poor learning strategies which hindered their understanding of iteration. Anzai and

Uesato (1982) found similar results. They hypothesized that learning iteration first

helps with recursion because iteration provides a model for what a recursive call

does. However, learning recursion first does not help with iteration because

iteration is easily mastered, and the recursion construct is not understood well

enough to serve as the basis for transfer. Wiedenbeck's (1989) study provided

directional, but not significant (p < .10), support for the above two studies. She

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

concluded that the wisely suggestions for educational practice are probably to

teach iteration before recursion.

Wiedenbeck (1989) also studied the extent to which students trained only

with recursive examples are able to transfer their knowledge to compute other

similar recursive mathematical functions in abstract form. It turned out that

subjects who were subsequently given abstractly stated problems performed

somewhat worse than they had performed previously when given examples.

However, they did perform far better than a control group trained only with an

abstract description of recursion (without examples). Pirolli and Anderson (1985)

conducted an analysis and simulation model of verbal protocols of three subjects

learning to program recursive functions. They found that problem solving by

analogy to work-out examples is frequent in initial attempts by novices to write

recursive functions. Subjects rely heavily on examples to guide their solutions to

novel and difficult problems. It seems that providing extensive examples can

serve as models to facilitate students' learning recursion.

In comparing the effects of conceptual models, Cheer (1987) examined the

effects of three models: architecture-oriented (stack simulation), theory-oriented

(mathematical induction), and task-performance-oriented (structure template)

models to teach college students recursive programming in Pascal. Three groups

of students were taught recursion by means of video-taped lectures developed for

each of the three models. No significant difference in achievement in recursion

was found among the three groups. Students identified as having higher general

computer science ability did demonstrate higher achievement in recursion,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

regardless of the conceptual models provided in instruction. Pirolli (1985/1986a)

found subjects receiving the structure template model learned to program their

recursive functions in less time than did subjects receiving the process tracing

model. The performance (achievement) on the tasks between these two groups

were not compared.

2.5.4 Implications for Instruction

From the previous discussion, the implications for teaching recursion can

be summarized as follows:

1. Students' difficulty in learning recursion is mainly due to their inability to

develop adequate mental models of the tasks. The provided conceptual

models in instruction may play a crucial role here.

2. It is necessary to teach students the two basic skills: knowledge of how

recursion works and knowledge of how to construct recursive algorithms.

This implies that both glass box and black box approaches are important

in teaching recursion.

3. Learning iteration first may help students when learning recursion, but not

vice versa. (In fact, iteration is generally introduced before recursion in

teaching a block-structure language such as Pascal.)

4. Providing extensive examples will facilitate novice students' learning

recursion.

These implications serves as guidelines in developing the instructional

framework for teaching recursion in the present investigation. According to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68

framework, the two sets of instruction materials (abstract and concrete) were

designed, and their relative concreteness-abstractness were emphasized. The

details of the instructional materials will be addressed in the following chapter.

2.6 Summary

Norman (1983) stated that "As teachers, it is our duty to develop

conceptual models that will aid the learner to develop adequate and appropriate

mental models" (p. 14). A conceptual model of a system serves as an advance

organizer by providing novices with a basic knowledge structure that can be used

to build an initial mental model. Previous research has shown the effectiveness of

conceptual models in teaching computing systems. Furthermore, in general, the

conceptual models are most effective for domains that are novel or complex.

Conceptual models can be categorized into two types of models — abstract and

concrete, according to the relative concreteness of their base domain and the detail

level of internal process shown in the models. Literature does not provide

conclusive findings for which type of conceptual model is better than the other.

Mayer is one of the few researchers who has studied the effects of

conceptual models in computer programming domain. He repeatedly

demonstrated the effectiveness of concrete models in teaching programming.

However, Mayer’s series research did not explore more complex conceptual

knowledge such as the concept of data structures or the concept of flow of control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

(e.g., recursion or iteration). Neither did he investigate the effects of abstract

models.

Researchers in mental models have pointed out that individuals' cognitive

learning styles is one of the main individual difference features that affected the

formation and acquisition of mental models. According to Kolb's learning styles

theory, abstract learners take an analytical approach in learning and rely on

systematic planning and logical thinking to solve problems; concrete learners take

an experiential-based approach in learning and tend to rely more on their feeling

and experiences in solving problems. Previous works have shown that abstract

learners are likely to perform better than concrete learners. Bostrom et al. (1987)

and Sein and Bostrom (1989) proposed that abstract learners may benefit more

from an abstract model and concrete learners may benefit more from a concrete

model. However, their studies did not provide decisive findings.

The reason for novices' difficulty in understanding recursion in

programming is their inability to develop adequate mental models. This is because

recursion is novel for novice programmers and recursive algorithms involve

several different aspects of programming knowledge, which complicate the

learning. Conceptual models appear to be appropriate tools for instruction in this

kind of domain. Many conceptual models have been used in teaching recursion,

but little research has been conducted to investigate their effectiveness. The major

findings from the research literature are that prior learning of iteration and giving

extensive examples may facilitate novice students' learning recursion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 Research Method

3.1 introduction

Recursion is a fundamental concept in computer science. Most computer

science students have difficulty in learning recursion when the concept is first

introduced. Conceptual models have been used in teaching recursion to help

students understand this abstract concept. Researchers have discovered that

students' learning styles may affect their learning and that there may be

connections between the conceptual models provided and individuals' learning

styles. The purpose of this study is to understand how conceptual models and

learning styles influence novice programmers in learning recursion.

To fulfill the purpose of this study, an experimental research design was

planned and implemented with a freshman computer science class at a major

southwest research university. The following sections describe the entire research

method.

3.2 Research Hypotheses

The research hypotheses tested in this experimental research study were:

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

HI: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the

posttest measure.

H2: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the

retention measure.

H3: Abstract learners will outperform concrete learners on the posttest

measure.

H4: Abstract learners will outperform concrete learners on the retention

measure.

H5: Abstract learners perform better on the posttest measure when

provided with abstract conceptual models as opposed to concrete

conceptual models.

H6: Abstract learners perform better on the retention measure when

provided with abstract conceptual models as opposed to concrete

conceptual models.

H7: Concrete learners perform better on the posttest measure when

provided with concrete conceptual models as opposed to abstract

conceptual models.

H8: Concrete learners perform better on the retention measure when

provided with concrete conceptual models as opposed to abstract

conceptual models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

3.3 Sample

The subjects for this study were students who enrolled in CS 304P at the

major southwest research university in the Fall of 1992. CS 304P, Computer

Science I, is the first required course for students who plan to major in computer

science. It is also recommended for nonmajors who plan to take a second

computer science course. The prerequisite for CS 304P is a score of at least 460

on the College Board Achievement Test in Mathematics at Level I, or three

semester hours of mathematics with a grade of at least C. The major objective of

this course is to introduce basic computer science concepts through programming

with Pascal. Students enrolled in this course are considered novice programmers

and have very little prior knowledge of computers in general or recursion in

particular. This course requires students to attend a one-hour lecture section in

addition to a two-hour discussion section each week. This course is a partially

self-paced course, once students get two weeks ahead in the class they no longer

have to attend the discussion sections. The lecture is taught by a course instructor,

and the discussions are led by Teaching Assistants (TA). There were a total of 12

discussion sections led by six TAs at the semester while this investigation was

conducted.

The two experimental groups in this study were the abstract model group

in which abstract conceptual models were used in teaching recursion, and the

concrete model group in which concrete conceptual models were used. Students

were assigned to the two groups by having each TA lead a section of both groups.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

Each group, of approximately equal size, consisted of six discussion sections and

were led by the same TAs. This avoided the possible variance caused by the TA

factor.

The learning style of each student was identified through his/her results on

the scrambled Kolb's Learning Style Inventory 1985 (LSI-1985, see section 3.6

Instrumentation). One major concern of the sampling process was that the

distribution of students' learning styles might be unbalanced. Because the learning

style of a student was determined by the norm provided in the LSI-1985 manual, it

was possible to have 90% abstract learners and only 10% concrete learners. This

would result in an inadequate number of subjects for the concrete learners' group.

To try to ensure that enough subjects would be in both learning styles groups, a

pilot test of students' learning styles was conducted on CS 304P students in the

Spring of 1992. It was found that the distributions of abstract learners and

concrete learners were about 60% and 40% respectively. Traditionally, more than

200 students enroll in CS 304P. This suggested that there would be enough

subjects in each learning styles group for statistical analysis.

3.4 Experimental Design

The design of this experimental study is a pretest-posttest, 2 X 2

(conceptual models X learning styles) factorial design. The effects due to the

conceptual models, learning styles, and the interaction of both in regards to

recursion performance can be easily examined through this design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

Subjects were randomly assigned to either the abstract model group or the

concrete model group based on which discussion section they attended. The

treatment in the study was the different conceptual models used to present

recursion to these two model groups. Within each model group, subjects were

identified as either an abstract learner or a concrete learner based on their scores

on the scrambled LSI-1985. Hence four treatment groups were formed: abstract

learners with abstract models, abstract learners with concrete models, concrete

learners with abstract models, and concrete learners with concrete models. To

compare students' performance in the different groups, a posttest and two

retention tests were conducted after the experimental treatment. There is evidence

that students' prior knowledge in computer programming may affect their learning

a new programming concept. Therefore a pretest was used to equate the variance

caused by students' prior knowledge in conducting the statistical analysis.

The independent variables for this research were: (1) the conceptual

models provided in teaching recursion, and (2) the student's learning style. The

first independent variable consisted of two levels: abstract conceptual models and

concrete conceptual models. The difference between the two models was that the

abstract model emphasized the mathematical concept of recursion while the

concrete model featured a more concrete demonstration of recursion. The second

independent variable also had two levels: abstract learning styles and concrete

learning styles. Students with an abstract learning style prefer logical thinking and

develop theories to solve problems. Students with a concrete learning style rely on

feeling and may learn better when provided with concrete examples.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

The dependent variables in this study were the subjects' performance in

recursive tasks on both the posttest and the retention tests. The posttest was

intended to measure how much the subjects had learned about recursion right after

the treatment. The retention tests, on the other hand, investigated the knowledge

retained a period of time after the treatment was given. Two retention tests, one

two weeks and the other six weeks after the treatment, were administered to the

subjects.

3.5 EXPERIMENTAL TREATMENTS AND PROCEDURES

At the beginning of the Fall semester of 1992, the investigator met with

the CS 304P instructor to arrange the appropriate time and procedures for the

experiment. It was decided that the best way to do the experiment was to integrate

the experimental procedures with the regular discussion section. This reduced

students' extra work for participating in the study and resulted in more students in

the experiment. Furthermore, to encourage students to participate, ten bonus

points (out of 1000 points for the course) were given to students who completed

the necessary procedures: signed a consent form, filled out the scrambled LSI-

1985, attended the lecture on recursion, and completed the posttest.

The treatment in this study was the use of different conceptual models to

teach recursion. A lecture based on the concrete conceptual model was presented

to one group (concrete model group); and a lecture based on the abstract

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

conceptual model was given to the other group (abstract model group). (See

Instructional Materials of the Instrumentation section for both materials.)

One discussion section of 50 minutes duration was scheduled at the middle

of the semester for the topic of recursion. The section was selected as the time for

the treatment and the posttest. Iteration (which may facilitate the learning of

recursion) and functions (which is a prerequisite for learning recursive functions)

were taught at least a week before this discussion section. The course consisted of

three major exams: review exam I, review exam II, and the final exam. Review

exam I was held about two weeks before the lecture on recursion and was used as

the pretest for the study. Review exam II and the final exam were scheduled two

weeks and six weeks after the lecture on recursion, respectively; the retention tests

were administered as part of both exams. Figure 3.1 shows the procedures for the

experiment.

Two weeks before the treatment, the investigator attended the weekly TA

meeting of the course and gave a brief introduction of the study and scheduled the

time that recursion would be taught in each TA’s discussion sections. The TAs

were asked to explain the study to students, to collect the signed consent forms

(Appendix B), and to administer the LSI instrument in their discussion sections

the following week (Phase 1). Students who signed the consent form gave the

investigator permission to access their exam scores in the course.

During the treatment week, the investigator visited all 12 discussion

sections to present the lectures on recursion (Phase 2). During this time the TAs

were not required to be in the classroom for the presentation. Six sections were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

given lectures using the abstract conceptual model and six sections were given

lectures using the concrete model. The lecture (treatment) took about 35 minutes,

and was followed by a 15 minute posttest. Students who were not participating in

the study were also strongly encouraged to come to the presentation because

recursion is a part of the course content and would be included in their review and

final exams.

Phase 0 Pretest (two weeks before the treatment)
a. Subjects take the pretest, (review exam I of the course)
b. The investigator meets with the TAs and schedules the experiment.

Phase 1 Consent Form and LSI (a week before the treatment)
a. Subjects sign a consent form.
b. Subjects fill out a LSI. (10 minutes)
c. Subjects are assigned to two model groups.

Phase 2 Treatment and Posttest (treatment week)
a. The investigator lectures to each group. (35 minutes)
b. Subjects take the posttest. (15 minutes)

Phase 3 Retention Test 1 (two weeks after the treatment)
a. Subjects take the first retention test.

(embedded in review exam II of the course)

Phase 4 Retention Test 2 (six weeks after the treatment)
a. Subjects take the second retention test.

(embedded in final exam of the course)

Figure 3.1 Experimental Procedures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

The first retention test (Phase 3) was embedded in review exam II. In order

to avoid the possible variance from the TAs' comments on recursion, the TAs

were asked not to discuss recursion in their discussion sections or during office

hours before review exam n. If students had any questions regarding recursion,

the TAs were to direct them to the investigator. The investigator held office hours

between the period of the treatment and review exam II. The investigator

answered students' questions using the appropriate treatment model. The second

retention test (Phase 4) was embedded in the final exam. After review exam n, the

TAs were free to discuss recursion with their students.

3.6 Instrumentation

Three kinds of instrument were used in this investigation: (1) a scrambled

Kolb's Leaming-Style Inventory 1985 (LSI-1985), (2) two sets of instructional

materials, and (3) a pretest and three recursion achievement tests. Each of these

will be described in greater detail below.

3.6.1 Leaming-Style Inventory 1985 (LSI-1985)

The revised Kolb's LSI-1985 is an improved version of the original

Leaming-Style inventory developed by David A. Kolb in 1976. Like its

predecessor, the LSI-1985 is designed to help individuals assess their ability to

learn from experience. It measures an individual's relative emphasis on four

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

learning orientations — Concrete Experience (CE), Reflective Observation (RO),

Abstract Conceptualization (AC), and Active Experience (AE) — and computes

two combination scores that indicate the extent to which the individual prefers

abstractness over concreteness (AC-CE) and to which he/she emphasizes action

over reflection (AE-RO). This study is interested in the abstract-concrete

dimension of an individual's learning style. Therefore the AC-CE scale is the

measure used in the study.

The LSI-1985 consists of 12 sentence-completion items in which

respondents attempt to describe their learning styles. Respondents are required to

rank-order (from 1 to 4) their preferences on four sentence endings that

correspond to the four learning orientations described in Kolb's theory. It takes

about ten minutes to complete the inventory. The resulting raw scores for the four

basic scales, CE, RO, AC, and AE range from 12 to 48, and range from +36 to -36

for the two combination scales AC-CE (AC minus CE) and AE-RO (AE minus

RO). To determine an individual's learning orientation along the abstract-concrete

dimension, a norm is provided in the manual. If the AC-CE score is greater than

or equal to four, the individual is classified as an abstract learner; otherwise the

individual is classified as a concrete learner (Smith & Kolb, 1986, P. 101). The

determination of the active-reflective dimension (AE-RO) uses a similar method.

Reliability

The internal consistency reliability for the four basic scales and two

combination scores, as reported in the manual, range from .73 to .88, as measured

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

by Cronbach's Standardized Scale Alpha (Smith & Kolb, 1986). Table 3.1 shows

the internal consistency of the LSI reported in the literature and a pilot study

conducted by the investigator. The mean coefficient alphas of the LSI-1985 for

the four scales which range from .80 to .83 are considered high. The reliability of

the two combination scales are not reported in the table because combined scales

violate the assumption of independence for a coefficient alpha.

Table 3.1 Internal Consistency for the LSI

Study N CE RO AC AE

LSI-1985
Smith & Kolb (1986) 268 .82 .73 .83 .78
Sims et al. (1989) 317 .82 .84 .84 .86
Ruble & Stout (1990) 312 .85 .80 .83 .81
Pinto & Geiger (1991)* 55 .78 .81 .84 .86
Ruble & Stout (1991) 229 .82 .79 .81 .82

Mean .81 .80 .83 .83
Scrambled LSI-1985
Ruble & Stout (1990) 323 .72 .72 .75 .73
Ruble & Stout (1991) 403 .67 .78 .78 .78
Veres etal. (1991)* 711/1042 .62 .67 .73 .55
Wu** 440 .77 .75 .81 .72

Mean .70 .73 .77 .70
* The coefficient alphas are the mean of two measures.
** See 3.9.1 Pilot Study 1.

Stability is another important property for a reliable measure. Smith and

Kolb (1986) provide no test-retest reliability data for the LSI-1985 in the manual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

81

nor in subsequent articles. Table 3.2 gives the test-retest correlations for the LSI in

several studies done by others. The test-retest reliability for LSI-1985 are

moderate for all scales, except for the CE attribute.

Table 3.2 Test-retest Correlations for the LSI

Study Interval N CE RO AC AE AC-CE AE-RO

LSI-1985
Atkinson (1988) 9 days 26 .57 .40 .54 .59 .69 .24
Atkinson (1989) 30 days 107 .49 .72 .67 .63 .59 .71
Pinto & Geiger(1991)* ly r 55 .25 .53 .59 .66 - -

Ruble & Stout (1991) 5 wks 139 .18 .36 .46 .47 .22 .54
Mean .37 .50 .57 .59 .50 .51

Scrambled LSI-1985
Ruble & Stout (1991) 5 wks 253 .37 .61 .59 .58 .48 .60
Veres etal. (1991)* 8 wks 711 .96 .97 .97 .96 - -

Mean .67 .79 .78 .77 .48 .60
- The correlation of the scale was not reported.
* The coefficients are the mean of six measures.

While the internal consistency of the LSI-1985 is high, the stability of the

inventory seems slightly low. This may be because of the response-set bias caused

by the format of the instrument. The sentence endings corresponding with the four

scales are presented in the same order for each of the 12 items of the inventory.

Thus, a tendency to respond in the same fashion across items will give a high

internal consistency, but may sacrifice the stability. A scrambled version of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

inventory was suggested by Ruble and Stout(1990, 1991) and Veres, Sims, and

Locklear (1991) to further improve the stability of the inventory. The four

sentence endings within each item were randomly scrambled but the order of the

12 items within the LSI-1985 were not changed. As they predicted, the internal

consistency of the scales was slightly decreased but the test-retest stability was

improved. Table 3.2 and 3.3 show the reliability results of both versions of the

LSI.

The scrambled LSI-1983 seems more reliable than the original LSI-1985

in that it takes out the response-set bias in the inventory. The mean coefficients for

both internal consistency and test-retest reliability of the scrambled LSI-1985 are

acceptable. The LSI used in the present investigation is a scrambled version of the

LSI-1985. The original LSI-1985 has all the sentence endings corresponding to

CE in the first column, RO in the second column, AC in the third column, and AE

in the last column. The scrambled version of the LSI-1985 used in this

investigation is located in Appendix C; and the scrambled item format for the

version is in Appendix D.

Validity

Numerous researchers (Ferrel, 1983; Katz, 1986; Marshall & Merritt,

1985; Wilson, 1986) have examined and found support for Kolb's two bipolar

dimensions: Abstract Conceptualization versus Concrete Experience (AC-CE) and

Active Experimentation versus Reflective Observation (AE-RO). Most of the

factor analytic research was done on the original LSI. Not much research has been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

done on the LSI-1983, and the findings regarding the validity of the LSI-1985 are

not conclusive. Cornwell, Manffedo, and Dunlap (1991) and Ruble and Stout

(1990) performed factor analysis on the LSI-1985 and the scrambled LSI-1985

and found the inventory failed to support the bipolar dimensions proposed in

Kolb's theory. However, Katz (1986) and a pilot test (See section 3.9) conducted

by the investigator do support the bipolar dimensions in Kolb’s theory.

Unfortunately, there is no perfect LSI at the time of this investigation.

After careful comparisons and study, Kolb's LSI seems a reasonable choice over

other learning style inventories. Karrer (1988) examined five existing LSIs and

concluded that all LSIs had weaknesses but Kolb's LSI was considered better than

others. In addition, the reliability and validity of the scrambled LSI-1985 were

verified in the pilot study conducted by this investigator. Therefore, the scrambled

LSI-1985 was selected as the instrument for measuring students' learning styles in

this investigation.

3.6.2 Instructional Materials

Two sets of instructional materials for teaching recursion were developed

based on the concrete and abstract conceptual models respectively. The major

difference between these two sets of instructional materials are in the introduction

section of the lecture and the verification step of each given example. For the

concrete model group, Russian Dolls serves as a literal metaphor in introducing

recursion, and block diagram tracing is used to verify recursive functions (See

Concrete Instructional Material below). For the abstract model group, recursion is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

introduced in terms of a recursive mathematical definition and verified by

mathematical induction (See Abstract Instructional Material below).

The rationale and development of the two sets of instructional materials

are described below.

Instructional Strategy

The instructional objectives of teaching recursion can be characterized by

the following skills (Dale & Lilly, 1991; Dale & Weems, 1991; Greer, 1987).

They are:

(1) to be able to read and understand recursive programs.

(2) to be able to write a recursive algorithm to solve a specific problem.

(3) to be able to evaluate when a recursive solution is appropriate for a

given problem.

Objective (1) deals with what is recursion and how does recursion work.

After knowing the definition and mechanism of recursion, objective (2) deals with

how to design a recursive solution for a specific problem. Due to the limitation

addressed in Chapter 1, the scope of recursive problems for this study is limited to

recursive functions with simple variables. Problems involving recursive

procedures or structured variables, which use the same concept but consist of

more complicated language features, are not covered in this investigation.

Objective (3), which seems too difficult for a novice programmer, is excluded in

this investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

The strategy for teaching recursion is designed to achieve the first two

objectives. To assure that the two sets of instructional materials have a parallel

structure, a framework for teaching recursion is developed first. The implications

for teaching recursion addressed in section 2.5.4. provide guidelines to design the

framework. Next, the corresponding conceptual models for both sets of materials

are put into the appropriate places to stress their relative concreteness-

abstractness. The framework for teaching recursion, which is summarized in

Figure 3.2, consists of the following six stages.

1. Introduction -- What is recursion?

2. Recursion in Pascal — How does recursion work?

3. Designing recursive algorithms — How to design a recursive solution?

(a) Understand the problem

(b) Determine the size of the problem

(c) Identify the base case(s) of the problem

(d) Identify the recursive case(s) of the problem

4. Verification — Verify the implemented algorithm

5. Examples — Apply the knowledge learned above to solve problems

6. Elaboration and Conclusion - Extend the concept to solve more

complicate problems

Figure 3.2 A Framework for Teaching Recursion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

1. Introduction — What is recursion? The definition of recursion is

introduced. The base case(s) and recursive case(s) of a recursive algorithm are

also defined in this stage. Different conceptual models may be given in the two

sets of instructional materials. The introduction is a critical part in the teaching of

a new concept. It not only bridges the new concept with prior knowledge (or

experience) but also provides a firm background for learning the concept.

2. Recursion in Pascal -- How does recursion work? This stage transfers

the abstract concept of recursion introduced above to application level, i.e., how

recursion works in a Pascal program and how it really solves a problem. A

recursive program is presented to students to explain the definition of recursion

within the context of a programming language. The base case and recursive case

of the program are identified and how recursion works is demonstrated by tracing

the execution of a recursive function call. Different conceptual models can be

used in tracing recursion for the two sets of materials.

3. Designing recursive algorithms - How to design a recursive solution?

This is one of the major goals for teaching recursion. Dale and Lilly (1991; pp.

474-475) provides a sound approach for designing a recursive solution:

(a) Get an exact definition of the problem to be solved.

(b) Determine the size of the problem to be solved. The size of the problem

will decrease after each recursive call.

(c) Identify the base case(s) in which the problem can be expressed

nonrecursively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

(d) Identify the recursive case(s) in which the problem is solved in terms

of a smaller version of the same problem — a recursive call.

4. Verification — Verify the implemented algorithm by tracing the program

(concrete model) or mathematical induction (abstract model).

5. Examples - Apply the knowledge learned from the above to solve

similar problems. This provides students an opportunity to summarize what they

have learned in stages 1 through 4 and apply them to new problems. The software

development method for solving programming problems (Koffman, 1992; pp. 13-

14) is integrated here to solve each example problem:

(a) Problem Specification. Gain a clear understanding of what is required

for the solution.

(b) Analysis and Design. Identify problem inputs, desired outputs, and any

constraints for the problem. Design a recursive algorithm as stated in

stage 3.

(c) Implementation. Implement the algorithm as a program, with Pascal.

(d) Testing and Verification. Test the completed program and verify that it

work as expected using the verification method stated in stage 4.

6. Elaboration and Conclusion - Extend the application of recursion to

problems which require the use of Pascal procedures or structured variables, or

which may have many base cases and/or recursive cases. The emphasis here is to

tell students that there are other kinds of recursive problems, but the concept they

just learned can be applied to all the problems. Because of time constraint, no

example is given in this stage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88

Three recursion problems: computing the Factorial of a number, Summing

the total from 1 to N, and calculating the Power of a number, are presented in both

sets of instructional materials. The Factorial problem is used in stages 2, 3, and 4,

to address the concept of recursion and how to design and verify the recursive

algorithm. The Summing and Power problems are discussed in stage 5 to give

students an overview of the entire problem solving process. The difference

between the two sets of instructional materials lies in the conceptual models

applied in the presentations. The next two sections describe the two sets of

instructional materials developed using the framework.

Concrete Instructional Material

The concrete instructional material set uses concrete conceptual models to

present recursion. Stacked Russian Dolls, along with a block tracing diagram

counting the dolls, is demonstrated in stage 1 to introduce the concept of

recursion. The block tracing diagram physically mimics the attribute of Russian

Dolls, where many successively smaller rectangles are drawn inside a large

rectangle. The block tracing diagram is again used in stage 2 to show how

recursion works and in stages 4 and 5 to trace the recursive algorithms developed.

In identifying the recursive case(s) of a problem, "Find the relationship between

the problem and a smaller version(s) of itself’ is used as a hint to remind the

students in the presentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissron

www.manaraa.com

89

The details of the materials are given in Appendix E and examples of the

block tracing diagram are found in Appendix F. Fourteen transparencies (See

Appendix G) were developed for presenting this approach.

Abstract Instructional Material

The abstract instructional material set employs abstract conceptual models

in presenting recursion. Recursion is introduced using the recursive definition of a

mathematical function. Then in stage 2, the mathematical equation operation (e.g.,

F(4) = 4 X F(3) = ...) is presented to show how recursion works. When verifying

recursive algorithms, mathematical induction is applied to argue (but not formally

prove) the correctness of the algorithm. Mathematical induction is briefly

introduced in stage 4 by stating that the base/recursive case in recursion is similar

to the base/inductive case in mathematical induction. The concept of mathematical

induction is always used in determining the recursive case(s) of a problem:

"Assume a smaller version o f the problem is true, then find the relationship

between the original problem and the smaller version of itself."

The material is found in Appendix H. Thirteen transparencies (See

Appendix I) were developed for this approach.

Validating the Instructional Materials

Several revisions were done to improve the structure as well as the relative

concreteness-abstractness of the materials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

90

The drafts of the materials were first reviewed by a local computer science

education seminar whose members are computer science educators in the

university. Then, the investigator lectured using both sets of materials and

videotaped the presentations. A computer science instructor who has been

teaching Pascal for years reviewed the tapes and gave opinions regarding the

presentation, the transparencies used, and the materials presented. The results of

this revision were used in the pilot study conducted in the summer of 1992. After

the pilot study, the investigator decided to take out one example (computing the

Nth Fibonacci number) from stage 5 because of the time constraint.

Two weeks prior to the treatment, the investigator presented the materials

to the local computer science education seminar group. The last revisions were

made and the final versions of both sets of materials were then produced.

3.6.3 Pretest and Recursion Achievement Tests

Pretest

The Pretest (See Appendix J) used in the investigation is a review test (i.e.,

review exam I) for CS 304P developed by the course instructor. The test consists

of 35 multiple choice questions. It tests students' computer knowledge such as

Boolean logic, assignment, If-Then-Else, and While loop. The results of this

pretest were used as the covariate in the statistical analysis which would equate

the variance caused by the students' prior knowledge. The internal consistency

reliability of the pretest is .65, which is reasonably high for a non-standardized

achievement test.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

Three recursion achievement tests, a posttest and two retention tests, were

developed for use in the investigation. The tests were designed to evaluate

whether students achieved the course instructional goals relating to recursion.

These goals are (1) to read and understand a recursive program and (2) to design a

recursive solution for a specific problem. Therefore, two types of questions,

predicting the results of a recursive program and generating the recursive

definition (the base and recursive cases) of a problem, were included in the tests.

Within each type of questions, two kinds of questions were given, one kind was

similar to the examples given in the instruction (treatment) and the other kind was

substantially different from the examples given in the instruction.

It is desirable to have open-ended questions rather than multiple choice

questions in the tests to be used. Open-ended questions offer few or no clues for

the answer and provide a wide variety or answers for analyzing students'

conceptions, but they require more effort in grading. Multiple choice questions, on

the other hand, are easier to grade but provide students with more opportunities to

guess and may result in lower test reliability. The posttest, which was conducted

by the investigator, was an open-ended format while the retention tests were

multiple choice questions. This was because the retention tests were embedded in

the CS 304P exams and needed to have the same format as the regular exams.

The questions in the recursion achievement tests were selected and revised

from pilot tests conducted before this investigation. These pilot tests included: a

quiz at the beginning of the follow-on course, and a pretest and three recursion

achievement tests used in the pilot study administered through the summer of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

1992. The item difficulty, appropriateness, and possible ambiguity of the

questions were analyzed and used as a reference in designing the final

achievement tests in this investigation.

Item difficulty is most relevant to achievement or aptitude tests and is

usually defined statistically as the percentage of persons who respond correctly to

an item. The higher the item difficulty value, the easier the item is considered to

be, and vice versa. In general, it is better to have items with a range of item

difficulties (e.g., ranging from .10 to .90) and with an average level of item

difficulty around .50 (Walsh & Betz, 1985, pp. 69-72). This provides a wide

distribution of the test scores and results in better discrimination among students'

performance.

All the recursion achievement tests developed in this investigation were

reviewed by the members in the local computer science education seminar group

before they were given to the students. The content validity of the tests were

satisfied through this process. The test scores collected in this investigation will be

analyzed in order to determine the reliability and item difficulty data for each test.

The three recursion achievement tests are described below.

Posttest

A copy of the posttest is located in Appendix K. This test consists of four

questions. The ability to read and understand recursive programs is measured by

question 1 and 3, which ask students to predict the results of recursive

function/procedure calls. The ability to generate recursive algorithms for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

problem is assessed through question 2 and 4, which require students to fill in the

base case(s) and recursive case(s) for the problems. Question 1 and 2 are similar

to examples given in the instruction; question 3 and 4 differ substantially from the

examples. Question 1 is like the Summing problem presented in the instruction

while question 2 has the same pattern as the Power problem. Question 3 deals

with a recursive procedure and question 4 has two base cases as well as two

recursive calls in the recursive case. Both types of questions were not discussed in

the instruction because of the time limitation of the presentation.

The total score for the posttest is 16 points. Each question is worth four

points, and thus two points for each blank slot except in question 2. In question 2,

two points are given to the base case and the remaining two points are for the

recursive case. Students were asked to show their work during the test. Partial

credit was awarded if students did not get the correct answer but showed their

understanding in their working out process. Partial credit was also given to

semantically correct but syntactically wrong answers in questions 2 and 4.

The reliability for the posttest is .80 (N = 332), as measured by Cronbach's

coefficient alpha. The data analyzed are the posttest scores collected in the study.

The item difficulty for each question is given in Table 3.3. The difficulties range

from .16 to .74 with an average difficulty .50. The test is considered to be a very

reliable instrument based on the results described above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

Table 3.3 Item Difficulty for the Three Recursion Tests

Test Ql 02 Q3 Q4 Q5 Mean

Posttest* .727.59 .74/.58 .50/.32 .35/. 16 .50

Retention 1 .61 .74 .41 .78 .48 .60

Retention 2 .65 .77 .90 .57 .15 .61
* Every question has two subquestions.

Retention Test 1

Retention test 1 (See Appendix L) is a part of review exam II of CS 304P.

This test contains five multiple choice questions. Questions 1 and 3 test predicting

the result of a program and Questions 2, 4, and 5 test generating the recursive

definition of a problem. Questions 1,2, and 4 are similar to the examples given in

the instruction while questions 3 and 5 are more elaborate questions. The total

score is five points, one point for each question.

The reliability for the test is .53 (N = 453), as measured by Cronbach’s

Alpha. The low alpha value may be due in part to a poor reliability or to some

other factors (e.g., test length or heterogeneous questions). Test length has an

effect on the alpha value. In general, the more items there are on the test, the

higher the alpha value for the test. The item difficulties for this test (Table 3.4)

shows good distribution and a reasonable mean difficulty value. A further analysis

of the test found the item discrimination for the five questions ranged from .28 to

.48, which is greater than .20. This shows that the questions are well-designed. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

can be concluded that the test is a reliable measure even though the alpha value is

not very high.

Retention Test 2

Retention test 2 is embedded in the final exam of CS 304P. A copy of the

test is located in Appendix M. This test consists of five multiple choice questions.

Questions 1 and 2 test predicting the result of a program and Questions 3 - 5 test

generating the recursive definition for a problem. Questions 1,3, and 4 are similar

to the examples given in the instruction while questions 2 and 5 are more

complicated questions. The total score is five points, one point for each question.

The reliability for the test is .62 (N = 400) which is satisfactory.

3.7 Data Collection

Scores on the scrambled LSI-1985, the pretest score, and three recursion

achievement scores (i.e., the posttest, retention test 1, and retention test 2) were

collected for each student in the experiment. The scrambled LSI-1985 test scores

were collected by the TAs a week before the treatment. The pretest scores were

provided by the instructor of CS 304P after review exam I. The posttest scores

were gathered by the investigator immediately after the treatment. The two

retention scores were extracted from the recursion questions in review exam II

and the final exam in CS 304P. Students were asked to fill in their names and

student ID numbers on all the tests in order to match their data in the experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

3.8 Data Analysis

Subjects who had studied recursion before the treatment were precluded

from the data analysis of the investigation. The information was collected by

asking subjects the following question: "Have you studied recursion before?" at

the beginning part of the posttest.

A two-way Analysis of Covariance (ANCOVA) was performed on all data

in order to test all the hypotheses. If F was significant at .05 level, then Scheffe's

test was conducted to test the significance of the difference between the groups. In

any investigation that involves learning, prior experience could influence how

well subjects perform on a task. Hence, students' prior knowledge in programming

(measured by the pretest) was the covariate in the analysis of performance. A

Homogeneous Slopes test was run to test if the covariate satisfied the assumption

of ANCOVA prior to the ANCOVA analyses.

The Cronbach's Standardized Scale Alpha was employed to further

analyze the internal consistency reliability of the instruments used in the

investigation. The statistical package SAS 5.18 in an IBM mainframe computer

was used to perform all the data analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

3.9 Pilot Study Results

Two pilot studies were conducted prior to the present investigation. Pilot

study 1 verifies the scrambled LSI used in the study. Pilot study 2 is similar to the

current investigation but with a small sample. The instruments and research

procedures were improved through the results of the pilot studies.

3.9.1 Pilot Study 1

The purpose of pilot study 1 was to determine the reliability and construct

validity of the scrambled LSI-1985. Another objective of this pilot study was to

investigate the distribution of students' learning styles in order to ensure that there

would be enough subjects in the different learning styles groups for the present

investigation. The scrambled LSI-1985 was administered to N = 440

undergraduate students at a major southwest research university during the spring

of 1992. The subjects were enrolled in the following classes: Computer Science I

(CS 304P), Computer Science II (CS 315), and Programming Languages (CS

345). The first two are lower division computer science classes while the last one

is an upper division class.

The distribution of students' learning styles by class is shown in Table 3.4.

Overall, 35% of the subjects were concrete learners and 65% were abstract

learners. The percentage of the abstract learners increased as the level of the class

progressed. This supported Kolb's claim that individual’s learning styles may be

oriented to a certain direction which relates to their learning or working

environment. The distribution of CS 304P students were 41% concrete learners

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

98

and 59% abstract learners. This suggested that there would be enough subjects

available in both learning style groups for the purpose of this investigation.

Table 3.4 Distribution of Learning Styles by Class for Pilot Study 1

Learning Styles CS 304P CS 315 CS 345 Total

Concrete Learner

Abstract Learner

97 (41%)

142 (59%)

44 (30%)

105 (70%)

14 (27%)

38 (73%)

155 (35%)

285(65%)

Total 239 149 52 440(100%)

Table 3.5 Distribution of Learning Styles by Sex for Pilot Study 1

Learning Styles Female Male Total

Concrete Learner 46 (40%) 102 (34%) 148

Abstract Learner 70 (60%) 201 (66%) 271

Total 116(28%) 303 (72%) 419 (100%)

* Twenty-one students did not fill out their sex identity.

Table 3.5 shows the distribution of students' learning styles by sex. The

percentage of both learning styles in male and female students are about the same,

which indicates that sex is not a factor in students' learning styles. Pinto and

Geiger (1991) and Allinson and Hayes (1990) also found no significant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

differences due to sex on the learning style scales. Therefore, the sex factor was

not considered in the present investigation.

The results of subjects' scores on the scrambled LSI-1985 were analyzed to

examine the reliability and validity of the inventory. The reliability for the four

basic scales all showed good internal consistency, which were .77 (CE), .75 (RO),

.81 (AC), and .72 (AE), as measured by Cronbach's Standardized Scale Alpha (N

= 440). According to Wiersma and Jurs (1990, p. 196), if an instrument consists of

a number of subscales, the scores on the subscales can be factor analyzed to

determine if they follow some hypothesized pattern. If they do, this would support

the construct validity of the instrument with respect to the hypothesized pattern. A

SAS program was employed to perform a principal factor analysis on the four

scales. A two-factor solution, with varimax rotation was run to verify the

construct validity of Kolb's two bipolar dimensions.

Table 3.6 Factor Loading for the Scrambled LSI (N = 440)

LSI Dimensions Factor 1 Factor 2

CE -.83 -.05

RO -.03 .86

AC .89 -.01

AE -.06 -.81

Variance .371 .347

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

The results of factor analysis is given in Table 3.6. The two bipolar

dimensions are very clearly shown in the table. The Concrete Experience (CE)

dimension is loaded negatively on the first factor, while the Abstract

Conceptualization (AC) dimension loaded positively. As for the second factor, the

Reflective Observation (RO) dimension is loaded positively whereas the Active

Experimentation (AE) dimension loaded negatively. The two factors together

accounted for 71.8% of the variance for the scrambled LSI-1985, which is

reasonably high. The two factors were about equally important in explaining the

variance, as the first factor accounts for 37.1%, and the second factor 34.7%.

These results provided support for the scrambled LSI-1985 as a measure of the

two bipolar dimensions proposed by Kolb's experimental learning theory.

3.9.2 Pilot Study 2

Pilot study 2 allowed the investigator to strengthen the present

investigation in terms of the sampling process, experimental procedures, as well

as the instruments. In particular, it enhanced the parallel structure of the two sets

of materials and time control of the presentation (treatment) in the current

investigation.

The pilot study was conducted during the summer of 1992. The subjects

were students who enrolled in CS 304P at a major southwest research university.

A total of 121 students enrolled in the course and 45 of them volunteered to attend

and complete the experiment. There were four discussion sections led by two

TAs. Each conceptual model group was compound of two discussion sections

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

which were led by different TAs. The discussion section was 75 minutes long and

scheduled twice a week. The time for the treatment was set at the discussion

section that held one week after students were taught function construct.

A week prior to the treatment, students were asked to fill out the

scrambled LSI-1985 and to sign the consent form. A pretest was given right

before the treatment (10 minutes). The treatment was the presentation of recursion

given by the investigator to each discussion section (approximate 40 minutes). A

posttest which had been pilot tested at the beginning of the summer was

administered immediately after the treatment (25 minutes). Two retention tests

were embedded as a portion of the review exam II and the final exam of the

course. The investigator held office hours for recursion questions before both

exams. The TAs were asked not to discuss recursion with their students.

Results

The distribution of the subjects in each group is summarized in Table 3.7.

Table 3.7 Subjects Distribution of Pilot Study 2

Abstract Model
Group

Concrete Model
Group Total

Concrete Learners 8 5 13 (29%)

Abstract Learners 15 17 32 (71%)

Total 23 22 45 (100%)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

There were 13 concrete learners, and only five of them in the concrete

model group. The inadequate number of concrete learners in both model groups

results in reduced statistical power in data analysis and thus any conclusion drawn

from the results should be very cautiously.

The reliability of the achievement tests, as measured by Cronbach's Alpha,

were: .67 (n = 85) for the pretest, .89 (n = 89) for the posttest, and .51 (n = 121)

and .43 (n = 113) for the two retention tests. The reliability of the two retention

tests did not seem high enough. This might be because both tests were short. The

test length has an effect on the reliability alpha value. The posttest consisted of

five programs and a total of 15 questions while the two retention tests consisted of

five and three questions, respectively. Since the retention tests were embedded in

the exams of the course, the number of recursion questions was restricted. Further

item analysis might be necessary to evaluate the reliability of the two tests. The

data for the two retention tests were not analyzed due to their undecided

reliability.

The SAS ANCOVA procedure was employed to analyze the posttest data

in pilot study 2. Table 3.8 presents cell data, and Table 3.9 presents the summary

results of the ANCOVA run on the posttest scores with the pretest scores serving

as the covariate. There were no main effects. No significant difference was found

between different types of conceptual models, F(l,40) = 0.81, p = .37; and

between different types of learning styles, F(l,40) = 2.81, p = .10, on the posttest

measure. Nor were the interaction effects between conceptual models and learning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

styles detected, F(l,40) = 3.30, p = .08. Even though no statistical differences

were found, some directional patterns can still be seen from the results. The

subjects in the concrete model group (adjusted Mean = 13.3) seemed to perform

better than the abstract model group (adjusted Mean = 11.6) while the abstract

learners (adjusted Mean = 14.2) outperformed the concrete learners (adjusted

Mean = 10.7). As for the interaction effects, the abstract learners seemed to

benefit more from the abstract models (adjusted Mean = 15.1); whereas the

concrete learners were hindered by the abstract models (adjusted Mean = 8.1).

Table 3.8 Descriptive Statistics on the Posttest Measure for Pilot Study 2

Group N Mean SD
Abstract Learner, Abstract Model 15 15.2 4.5
Abstract Learner, Concrete Model 17 13.3 5.0
Concrete Learner, Abstract Model 8 7.9 5.4
Concrete Learner, Concrete Model 5 13.2 4.2

Table 3.9 ANCOVA Results on the Posttest Measure for Pilot Study 2

Source SS df MS F P

Conceptual Models 26.79 1 26.79 0.81 .37

Learning Styles 92.92 1 92.92 2.81 .10

Interaction 109.27 1 109.27 3.30 .08

Error 1322.80 40 33.07

p< .05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104

Conclusion

Many flaws were found in this pilot study upon careful review and study.

These flaws might be responsible for the inconclusive findings. Appropriate

procedures were implemented to avoid similar flaws in the present investigation.

The following are the discussion of the flaws and how it was improved.

Sample Size. The sample size in the pilot study was too small, thus the

results were less conclusive because of low statistical power. The 45 subjects

accounted for only 37% of the students enrolled in the course in the summer of

1992. The subject recruiting procedures used in the current investigation were

enhanced by asking the course instructor and the TAs to advocate the learning

outcome of attending the experiment as well as giving additional credits for

participating. The number of subjects were increased to 237, which accounted for

52% of the total enrolled students, because of the improved sampling procedures

and the larger enrollment in the regular semester.

Presentation. The investigator presented recursion to the four discussion

sections. It was found that the time spent in each section were not quite the same

and even the materials presented to the same model group were not very

consistent. To gain better control of the time and the materials presented, more

transparencies were developed in order to cover more details of the presentation.

All the lectures/presentations in the present investigation followed the materials

shown in the transparencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

Achievement Tests. The slightly low reliability alpha values of the two

retention tests might be due to the fact that both tests were short. Further item

analysis would be necessary in order to guarantee the quality of the questions.

Test questions in the present investigation were adapted and/or revised from the

tests in pilot study 2 with the consideration of their item difficulties and item

discrimination.

No statistically significant effects were found in the ANCOVA analysis of

the conceptual models and the learning styles in pilot study 2. But, the directional

patterns for the two factors found in the pilot study were similar to several

previous research findings. A careful research design as in the current

investigation, which avoids the flaws in pilot study 2, is necessary to assure a

more conclusive finding.

3.10 SUMMARY

This chapter provided an overview of the research design of this

investigation, including the sample selection, the experimental treatment and

procedures, the development of the instruments, and the summary of two pilot

study results. The results of the investigation will be presented in the next chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 Research Findings

This investigation examined the effects of conceptual models and

cognitive learning styles in novices learning recursion. This chapter contains an

overview of statistical procedures, the results of data analyses, and a summary of

the findings.

4.1 Overview of Analysis Procedures

Of the 453 students registered for an introductory computer science course

(CS 304P) at a major southwest research university at the Fall of 1992, 280

(61.8%) students completed the pretest, signed the consent form, filled out the

scrambled LSI-1985, and took the posttest. Students in one of the 12 discussion

sections (ten students) were taught recursion before the treatment by their TA.

Thirty-three students indicated they had studied recursion before. These two

groups of students were excluded from the final data analysis. Therefore, N = 237

(52% of the enrolled students) was the sample size for this investigation. Table 4.1

reveals the distribution of subjects in each group. The number of subjects

decreased slightly for retention analysis because a few students did not take the

retention tests and a few dropped the course; N is 216 for retention test 1 and is

209 for retention test 2.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

Table 4.1 Distribution of Subjects

Abstract Model
Group

Concrete Model
Group Total

Concrete Learners 37 39 76 (32%)

Abstract Learners 75 86 161 (68%)

Total 112 125 237 (100%)

A two-way Analysis of Covariance (ANCOVA) was performed in order to

test all the hypotheses. If F was significant at .05 level (p < .05), then Scheffe's

test was conducted to test the significance of the difference between the groups.

Students' prior knowledge in programming (as measured by the pretest) was the

covariate in the ANCOVA analyses. A Homogeneous Slopes test was run to test if

the covariate satisfied the assumption of ANCOVA prior to the ANCOVA

analyses. The statistical package SAS 5.18 on an IBM mainframe computer was

used to perform all the analysis.

4.2 RESULTS OF DATA ANALYSIS

The results of the posttest and the two retention tests are analyzed in the

following sections in order to test all the hypotheses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108

4.2.1 Analysis of the Posttest

The posttest measured subjects' understanding of recursion after the

treatment. It was designed to test Hypotheses 1,3,5, and 7. A Homogeneity Slope

test was conducted prior to doing the ANCOVA calculation. The homogeneity

test was not significant (p = .57), which means it was safe to proceed with the

ANCOVA analysis. The descriptive statistics for the ANCOVA analysis are in

Table 4.2. Table 4.3 presents a summary result of the ANCOVA analysis on the

posttest measure.

Table 4.2 Descriptive Statistics on the Posttest Measure

Group N (237)
Pretest

Mean SD
Posttest

Mean SD

Conceotual Models
Concrete Model 125 26.5 3.5 7.9 3.9
Abstract Model 112 26.4 3.3 6.8 4.1

Learning Styles
Concrete Learners 76 25.9 3.3 6.2 3.7
Abstract Learners 161 26.7 3.4 7.9 4.0

Leamine Stvles x
Conceptual Models

Abstract x Abstract 75 26.5 3.5 7.2 4.1
Abstract x Concrete 86 26.9 3.4 8.5 3.9
Concrete x Abstract 37 26.3 2.9 5.8 3.8
Concrete x Concrete 39 25.5 3.7 6.7 3.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

Table 4.3 ANCOVA Results on the Posttest Measure

Source SS df MS F P

Conceptual Models 67.57 1 67.57 5.09 .03

Learning Styles 82.94 1 82.94 6.24 .01

Interaction 0.28 1 0.28 0.02 .89

Error 3082.81 232 13.29

p< .05

The results of hypotheses testing are as follows:

HI: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the

posttest measure.

The conceptual models main effect was significant, F(1,232) = 5.09, p =

.03. The concrete model group (adjusted Mean = 7.7) performed better than the

abstract model group (adjusted Mean = 6.5) on the posttest measure. The results

supported this hypothesis. Therefore, students instructed in recursion with

concrete models outperformed those instructed with abstract models on the

posttest measure, regardless of their learning styles.

H3: Abstract learners will outperform concrete learners on the posttest

measure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110

The learning styles main effect was also significant, F(1,232) = 6.24, p =

.01. Abstract learners (adjusted Mean = 7.8) outperformed concrete learners

(adjusted Mean = 6.5) in posttest performance, regardless of the conceptual

models provided in instruction. The final results support the hypothesis.

H5: Abstract learners perform better on the posttest measure when

provided with abstract conceptual models as opposed to concrete

conceptual models.

H7: Concrete learners perform better on the posttest measure when

provided with concrete conceptual models as opposed to abstract

conceptual models.

Hypotheses 5 and 7 test the interaction effects between conceptual models

and learning styles on the posttest measure. There was no interaction effect

detected, F(1,232) = 0.02, p = .89. Therefore, these two hypotheses were not

supported. Abstract learners did not benefit more from abstract models, and

concrete learners did not benefit more from concrete models as measured in the

posttest.

4.2.2 Analysis of the Retention Tests

The two retention tests were used to compare the effects of conceptual

models and learning styles after a period of two and six weeks of the treatment.

The retention tests were designed to test Hypotheses 2, 4, 6, and 8. A

Homogeneity Slope test was conducted prior to doing the ANCOVA calculation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

on both retention measures. The homogeneity test was not significant for either

retention test 1 (p = .56) and test 2 (p = .21). The descriptive statistics and the

summary ANCOVA results on both retention measures are summarized in Table

4.4,4.5,4.6, and 4.7.

Table 4.4 Descriptive Statistics on Retention Test 1 Measure

Group N (216)
Pretest

Mean SD
Posttest

Mean SD

Conceptual Models
Concrete Model 119 26.6 3.5 3.0 1.3
Abstract Model 97 26.4 3.4 2.7 1.3

Learning Styles
Concrete Learners 71 25.8 3.4 2.5 1.3
Abstract Learners 145 26.8 3.5 3.0 1.3

Learning Styles x
Conceptual Models

Abstract x Abstract 65 26.5 3.6 2.9 1.2
Abstract x Concrete 80 27.1 3.4 3.2 1.3
Concrete x Abstract 32 26.3 3.0 2.5 1.4
Concrete x Concrete 39 25.5 3.7 2.5 1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

Table 4.5 ANCOVA Results on Retention Test 1 Measure

Source SS df MS F P

Conceptual Models 1.32 1 1.32 0.89 .35

Learning Styles 7.88 1 7.88 5.34 .02

Interaction 0.27 1 0.27 0.18 .67

Error 311.55 211 1.48

p < .05

Table 4.6 Descriptive Statistics on Retention Test 2 Measure

Ersiest Posttest
Group N (209) Mean SD Mean SD

Conceptual Models
Concrete Model 111 26.5 3.6 3.6 1.3
Abstract Model 98 26.3 3.4 3.5 1.4

Learning Stvles
Concrete Learners 69 25.9 3.4 3.3 1.4
Abstract Learners 140 26.6 3.5 3.7 1.3

Learning Stvles x
Conceptual Models

Abstract x Abstract 65 26.3 3.6 3.7 1.3
Abstract x Concrete 75 27.0 3.4 3.7 1.3
Concrete x Abstract 36 26.4 3.0 3.1 1.6
Concrete x Concrete 36 25.3 3.8 3.4 1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

113

Table 4.7 ANCOVA Results on Retention Test 2 Measure

Source SS df MS F P

Conceptual Models 1.98 1 1.98 1.22 21

Learning Styles 5.21 1 5.21 3.21 .05

Interaction 2.68 1 2.68 1.65 .20

Error 331.28 204 1.62

p < .05

The results of hypotheses testing are as follows:

H2: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the

retention measure.

There was no conceptual models main effect found on either retention

measure, F(l,211) = 0.89, p = .35 for retention test 1; and F(l,204) = 1.22, p = .27

for retention test 2. The concrete model group (adjusted Mean = 3.0 and 3.7)

performed marginally better than did the abstract model group (adjusted Mean =

2.7 and 3.5) on both measures. This hypothesis was weakly supported; however,

the difference was not significant at the .05 level.

H4: Abstract learners will outperform concrete learners on the retention

measure.

The learning styles main effect was significant on both retention measures,

F(l,211) = 5.34, p = .02 for retention test 1; and F(l,204) = 3.21, p = .05 for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114

retention test 2. Abstract learners (adjusted Mean = 3.0 and 3.7) outperformed

concrete learners (adjusted Mean = 2.5 and 3.3) on both retention tests, regardless

of the conceptual models provided in instruction. The hypothesis was supported.

H6: Abstract learners perform better on the retention measure when

provided with abstract conceptual models as opposed to concrete

conceptual models.

H8: Concrete learners perform better on the retention measure when

provided with concrete conceptual models as opposed to abstract

conceptual models.

Hypotheses 6 and 8 concern the interaction effects between conceptual

models and learning styles on the retention measure. The interaction effect was

not significant on either retention measure, F(l,211) = 0.18, p = .67 for retention

test 1; and F(1,204) = 1.65, p = .20 for retention test 2. These two hypotheses

were not supported by either retention measure. Abstract learners did not benefit

more from abstract models, and concrete learners did not benefit more from

concrete models on the retention measure.

4.3 Summary of Findings

Table 4.8 is a summary of the hypotheses testing. The findings of this

investigation are summarized below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

115

Table 4.8 Summary of Hypotheses Testing

Hypotheses Results

Conceptual Models Effects

HI Concrete models superior to abstract models on the
posttest measure

Support

H2 Concrete models superior to abstract models on the
retention measure

Leamine Stvles Effects

Weak support

H3 Abstract learners superior to concrete learners on the
posttest measure

Support

H4 Abstract learners superior to concrete learners on the
retention measure

Interaction Effects

Support

H5 Abstract models better for abstract learners on the posttest
measure

No support

H6 Abstract models better for abstract learners on the
retention measure

No support

H7 Concrete models better for concrete learners on the
posttest measure

No support

H8 Concrete models better for concrete learners on the
retention measure

No support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116

Concrete conceptual models were better than abstract conceptual models

in teaching recursion to novice programmers. However, the teaching effects

weakened several weeks after classroom instruction. The finding is concluded

from the results of Hypotheses 1 and 2 testing.

Novice programmers with abstract learning styles performed better than

those with concrete learning styles when learning recursion. The data collected

from the three recursion performance tests used in this investigation all supported

this claim.

Finally, no interaction effect was found between the conceptual models

provided in instruction and novice programmers' learning styles when learning

recursion. Abstract learners did not necessarily benefit more from abstract

conceptual models, and concrete learners did not necessarily benefit more from

concrete conceptual models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 Conclusion

This chapter includes a brief summary of the research problem and

methodology used, a discussion of the results, and implications of the results.

Finally, recommendations for future research are suggested.

5.1 Summary

Most computer science students have difficulty in learning recursion when

the concept is first introduced. The reason may be because of a lack of everyday

analogies and the complexity that recursive programming involves. A conceptual

model used as an advance organizer is considered as a useful tool in helping

students learning in a domain of this type. There is evidence that individual

differences such as cognitive learning styles may affect students' learning.

Furthermore, there may be connections between the conceptual models provided

and individuals' learning styles. The purpose of this study was to better understand

how different types of conceptual models and cognitive learning styles influence

novice programmers when learning recursion.

The problem with which this study is concerned is Which o f two

conceptual models (concrete or abstract) will best help novice programmers with

different cognitive learning styles (concrete or abstract) to learn recursion?

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118

An experimental research design was planned and implemented to study

this research problem. The design was a pretest-posttest, 2 X 2 (conceptual

models X learning styles) factorial design. Two hundred thirty-seven students

enrolled in an introductory computer science class at a major southwest research

university served as the subjects for this study. Subjects were randomly assigned

to either an abstract model group or a concrete model group and the groups were

of approximately equal size. The treatment in the study was the different

conceptual models (abstract or concrete) used to present recursion to the two

model groups. Within each model group, subjects were identified as either an

abstract learner or a concrete learner based on their scores on the scrambled LSI-

1985. Conceptual models and learning styles were the two independent variables

of this experimental design.

To compare students' performance in the different groups, a posttest and

two retention tests were administered after the treatment. These three performance

tests were the dependent variables of this design. A pretest administered prior to

the treatment was used to equate the variance caused by students' prior knowledge

in the statistical analysis. The statistical procedure two-way ANCOVA was

employed to analyze all of the performance data. Two pilot studies were carried

out to verify the instruments and to intensify the experimental design and

procedures prior to the current investigation.

The results of this study were presented in Chapter 4 and will now be

reviewed in the next section of this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

5.2 DISCUSSION OF THE RESULTS

The four research questions proposed in the investigation are discussed

below.

5.2.1 Conceptual Models

Research Question 1:
Are concrete conceptual models better than abstract conceptual
models in helping students to learn recursion?

The results of Hypotheses 1 and 2 provided answers to this research

question. Concrete conceptual models were better than abstract conceptual

models in helping novice programmers to learn recursion. However, the effect

was weak several weeks after the treatment (instruction). These findings are in

accordance with Mayer's series studies (1981, 1982, 1985, 1987, 1988) which

provided evidence for the effectiveness of using concrete models in teaching

programming. Mayer believed that a concrete model allows novices to "see the

works" and consequently helps them assimilate new information in a more

coherent and useful way. On the other hand, an abstract model hides the internal

details of a system from the users. Novices are likely to assume the system is just

not understandable and thus they tend to memorize algorithms that "work", and

are not able to develop a real understanding of the system.

The findings differ from two other studies (Greer, 1987; Pirolli,

1985/1986a) on the effects of conceptual models in teaching recursion for several

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

120

reasons. Pirolli found subjects receiving the abstract model (structure template

model) learned to program their recursive functions in less time than did subjects

receiving the concrete model (process tracing model). However, he did not

compare the performance (achievement) on the tasks between the two models as

the present investigation did and the sample size of his study was very small (N =

19).

Greer (1987) did not find any significant difference between the concrete

(architecture-oriented approach) and abstract (theory-oriented and task-

performance-oriented approaches) models in teaching recursion in Pascal. The

major differences between his study and the present investigation lie in the

subjects and the scope of recursion involved in the experiments. The subjects of

his study were not novice programmers but typically had at least a semester of

programming experience and had been briefly introduced to the concept of

recursion in their previous course. The subjects for this investigation were

enrolling in their first computer science course and had not studied recursion

before. Also, the scope of recursion involved in Greer's study was far more

extensive. The current investigation involved only recursive functions with simple

variables; the Greer's study also involved recursive procedures and recursion with

structural variables such as arrays and pointers. It is ideal to investigate recursion

from this global aspect, but care must be taken when measuring students'

performance. Students’ inability to solve a recursive problem may not be because

they do not understand recursion but because they cannot handle the more

complicated structures involved in the problem such as lists or trees.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

The result of Hypothesis 2 showed that there were no significant

differences between the two types of conceptual models on the retention

measures. The concrete model group only performed marginally better than did

the abstract model group for the retention tests, p = .35 and .27, respectively.

These inconclusive results may be due to the fact that only 35 minutes of

instruction (treatment) were given in the present investigation and this may well

be too short to demonstrate the retention effects. Luiten et al. (1980) provided

support for this explanation. In their meta-analysis of 135 studies, they found that

the effect of advance organizers (conceptual models, termed in this study)

increased with time; that is, when the instruction in the experiments extended to

several days or weeks as compared to a few hours, the retention effect was

stronger.

Halasz and Moran (1982) suggested that a concrete model (analogical

model in his term) is effective for communicating complex concepts to novices

when used as a literary metaphor whose function is simply to illustrate some

salient points of the target system, but it is dangerous when used as reasoning

about computer systems. The problem arises when a learner tries to extract more

structure or relationships from an analogy than is warranted (du Boulay, 1986).

They suggested that reasoning is much better done with an abstract model.

Bennett (1984) and Sein et al. (1987) provided evidences for this assertion. They

found that the abstract model group performed better than the concrete model

group in complex tasks; the effect was reversed in simple tasks. However,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

122

Bennett's study, which was criticized for using a very contrived and artificial task,

and considered to have very limited external validity (Newell & Card, 1985).

The difference between the present investigation and Sein et al.s’ study are

two fold. First, the target domains were different. They investigated a mail filing

system while this investigation examined the domain of programming. Secondly,

the concrete model used in their study might be too 'concrete' to infer the target

system. They used a file cabinet as the concrete model of a filing system. Halasz

and Moran (1982) have pointed out that a concrete model such as a filing cabinet

is better used as a literary metaphor. When someone says that a file system is like

a filing cabinet, it is simple to infer that the computer file system functions as a

storage and retrieval system, but it is a complicated task to work out in detail how

computers and filing cabinets are similar. While in the present investigation, the

concrete models used were a concrete object (Russian Dolls) used as a literary

metaphor and a block tracing diagram to demonstrate the mechanism of recursion.

The current investigation supports the use of concrete models in teaching

novices programming, particularly in teaching novices recursion. The quality of

concrete models is a critical issue in instruction. Effective concrete models must

not only have a relative concrete base domain but also need to demonstrate an

appropriate level of detail of the internal process of a system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

5.2.2 Cognitive Learning Styles

Research Question 2:
Do students with an abstract learning style outperform students with a
concrete learning style in learning recursion?

The results of Hypotheses 3 and 4 showed that students with abstract

learning styles performed better than those with concrete learning styles in

learning recursion. The effect was independent of the type of conceptual models

used in instruction. The finding is in agreement with previous work (e.g.,

Cavaiani, 1989; van Merrienboer, 1988; Bostrom et al., 1987; Sein & Bostrom,

1989, Zuboff, 1988) which found that abstract or analytical learners tend to

perform better than concrete or non-analytic learners in computer related domains.

The result is also consistent with Kolb's theory. Research on the Kolb's LSI has

found a strong correspondence between individuals' learning styles and the careers

people choose. Individuals found in the same careers tend to have similar learning

styles. In other words, there is a 'fit' between individuals' learning styles and the

requirements of their careers. People in the field of computer science are more

likely to have an abstract learning style (Smith & Kolb, 1986). Learning computer

science requires using logic and symbols, abstracting concepts, developing

theories and models, and systematically analyzing problems. Clearly, abstract

learners are much more comfortable with these kinds of learning situations. This

may be the reason why abstract learners performed better than concrete learners in

learning recursion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

124

5.2.3 Conceptual Models X Learning Styles

Research Question 3:
Do students with an abstract learning style learn recursion better
when provided with abstract conceptual models?

Research Question 4:
Do students with a concrete learning style learn recursion better
when provided with concrete conceptual models?

These two research questions deal with the interaction effects between

conceptual models used in instruction and an individual's cognitive learning style.

The test of Hypotheses 5 through 8 provided the answer for these two research

questions. There were no interaction effects detected on all three recursion

performance measures (i.e., the posttest and two retention tests). These results

suggested that abstract learners did not necessarily benefit more from

abstract conceptual models, and concrete learners did not necessarily benefit

more from concrete conceptual models in learning recursion.

Two studies (Bostrom et al., 1987; Sein & Bostrom, 1989) in the literature

examined the interaction effects between conceptual models and learning styles in

learning about computer systems (e.g., mail filing system). They proposed that

abstract learners who take an analytical approach to learning would have the

abilities to discover the rules and structures inherent in an abstract model.

Conversely concrete learners take an experience-based approach to learning and

tend to rely heavily on prior relevant experience drawn from a concrete model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125

Therefore, abstract learners should benefit more from an abstract model, and

concrete learners should benefit more from a concrete model. However, their

experiments did not provide strong support for their claim.

Table 5.1 Summary of Studies on Interaction Effects

Study Target System Measure Results*
Bostrom et al (1987)

Study #1 Financial Accuracy NS
Planning System Time NS

Comprehension NS
Study #2 Mail System Accuracy NS

Time NS
Comprehension NS

Study #3 Mail System Accuracy S
Comprehension NS

Study #4 Lotus 1-2-3 Accuracy NS
Comprehension NS

Sein & Bostrom (1989) Mail System Accuracy S
Comprehension NS

Wu (the present study) Recursion Comprehension NS
*p<.05, NS: Not Significant, S: Significant

Table 5.1 is a summary of interaction effects between conceptual models

and learning styles on the abstract-concrete dimension in these two studies and the

present investigation. The measure Accuracy refers to whether a particular

learning task was completed correctly. It was measured by the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

experimental tasks performed correctly. Time is the amount of time taken to

complete a task. Comprehension is the score obtained on the post-training quiz

which tested subjects' knowledge about specific functions, features, and

application of the target software. Two studies on the accuracy measure supported

their claim; no significant interaction effects were found on the remaining

measures. It seemed, in general, that the interaction effects were very weak.

The inconclusive findings might be because of the different nature of the

measures and the different target domains. The two interaction effects found in

Table 5.1 were both in the accuracy measure of learning a mail system. The

accuracy measure was measured through subjects' interacting with a computer

system. A possible explanation is that the interaction effects were more likely to

happen when students directly interact with a computer system, but not for using

pens and papers (such as comprehension measure), to solve a problem. If this is

the case, the match of conceptual models and learning styles may be helpful for

students1 debugging in programming, which requires students interacting with

computers, but it does not provide help for comprehending an abstract concept

such as recursion.

5.3 Implications

The importance of conceptual models in teaching/training a complex

domain has been established in the literature. However, the form of conceptual

models (concrete or abstract) that are more effective in helping novices learning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127

has remained inconclusive. The same issue exists in using conceptual models in

teaching recursion. The findings of this investigation suggest that concrete models

are better than abstract models in teaching novice programmers recursion. Yet, for

intermediate or experienced programmers who may or may not have prior

knowledge about recursion, which type of conceptual models are favorable is still

an open issue. Teachers should be very cautious in adapting or designing concrete

models. A concrete model needs not only to employ an analogy from a relatively

concrete (and familiar, if applicable) object but also to demonstrate the

appropriate level of details of the internal mechanism as defined in this

investigation. Several current introductory computer science textbooks (e.g., Dale

& Weems, 1991; Koffman, 1992) have provided good examples of using concrete

models to present recursion.

Though individual's learning style is not a measure of ability such as

intelligence, some styles may be more effective than others in certain situations.

Previous studies have shown that an individual's learning style can be a predictor

of his/her success in certain career fields. The results of this investigation as well

as other studies suggest that individuals with an abstract learning style tend to

perform better in computer related fields. In other words, individuals with a

concrete learning style will have more difficulty in learning computer science

concepts such as recursion. As a teacher, it is important to identify these students

and provide them with care and support necessary for success. Awareness of

students' learning styles may assist teachers in aligning their teaching methods

with their students, rather than to their own personal learning style. In addition,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

teachers can assist students in evaluating and adapting their own learning styles

and can use more versatile learning strategies to adjust to the instructional setting

(Davidson, 1990).

Theoretically, the matching of students' learning styles and appropriate

conceptual models in learning a system or concept is a sound instructional

approach. However, previous studies did not provide plausible findings. Neither

did this investigation find any relationship between students' learning styles and

conceptual models used in teaching recursion. A careful examination of Bostrom

and his colleagues' studies (Bostrom et al., 1987; Sein & Bostrom, 1989) revealed

that the relationship might exist in tasks which emphasized interacting with

computers such as using a mail system. As for learning recursion, or programming

in general, the matching of learning styles and conceptual models might be useful

in tasks such as debugging programs.

5.4 Recommendations for Future Research

One limitation of the present investigation was the time of the treatment

(instruction) which was limited to 35 minutes. This restriction may have resulted

in the lack of retention effects seen between the conceptual models. The time

limitation also restricted the coverage to only one aspect of recursion: recursive

functions with simple variables. A replication study with a longer treatment period

that covers more aspects of recursive programming is recommended. It is

important to design a sensitive measure that can distinguish between the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129

achievement in recursion and other aspects of programming (e.g., pointers) in the

replication study.

The concern of this investigation was how conceptual models related to

novice programmers learning recursion. Students' mental models of recursion

were not analyzed in this study. Many studies have examined students' mental

models of recursion (e.g., Kessler & Anderson, 1986; Pirolli, 1986a; Greer, 1987).

However, they generally suffered from two methodological shortcomings: over

reliance on performance data and lack of ecological validity (one-shot study with

a short time interaction between users and system) as described in Sasse's paper

(1991). Bhuiyan et al. (1991) have done a preliminary study to explore students'

mental models of recursion from the evolving aspects. More research which

avoids the methodological shortcomings cited above should be conducted to better

understand students' mental models of recursion.

The present study investigated the abstract-concrete (AC-CE) dimension

of Kolb's learning styles in learning recursion. This dimension was considered

more likely to have interaction effects with conceptual models used in instruction.

It is also interesting to note how the other dimension, active-reflective (AE-RO),

relates to students learning recursion. The active-reflective dimension deals with

aspects of active involvement in learning and may have interaction effects with

the type of instructional methods provided and is less related to the conceptual

models used. For example, reflective learners would rely on observation and

viewing things from different perspectives, but would not necessarily take any

action in their learning. A traditional lecture-based instruction would be more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130

appropriate. On the other hand, active learners prefer experimenting with

changing situations and getting things done through action. An activity-based

instruction such as group discussion or closed laboratory (described as in Tucker,

1991) would be more appropriate. Future research should investigate how the

active-reflective dimension of learning styles relates to the instructional methods

provided.

Finally, the match of learning styles with conceptual models is

theoretically sound as discussed in Chapter 2. However the present investigation

and previous studies provided few supports for this assertion. Research in this

field is still too young to draw a definite conclusion. More research needs to be

done in the field. As observed from the previous studies, the interaction effects

seem more likely to exist in tasks (or domains) which require directly interacting

with computer systems. Future research is also recommended to investigate the

relationship between the characteristic of learning tasks (or domains) and the

matching of learning styles with conceptual models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A Introduction to Recursion

Recursion, Recursive Function, or Recursive Procedure is a mechanism
for defining something in terms of a simpler version of itself. An example of
recursion in mathematics is the factorial function:

f(n) = 1, ifn = 0 {Base Case)
n X f(n-1), if n > 0 (Recursive Case)

in which, f(n) is defined in terms of f(n-l). The case (or cases) for which
an answer is explicitly known is called the base case; the case for which the
solution is expressed in terms of a simpler version of itself is called the recursive
or general case. The computation of such a function is carried out by suspending
the calculation of n X f(n-l) until f(n-l) is carried out, which in turn requires that
(n-1) X f(n-2) be suspended until f(n-2) is carried out, and so on, until f(0) is
reached. For instance, the value of f(3) is carried out as following.

f(3) =3Xf(2}
= 3 X 2 X f m
= 3 X 2 X lXfTO) (n = 0, Base Case)

= 3 X 2 X 1 X 1 (f (0) = l)
= 6

In a programming language, a function or procedure is called recursive if it
calls itself. For example, a Pascal implementation of the factorial function would
be as below:

FUNCTION f (n : Integer): Integer,
BEGIN
IF n = 0

THEN f := 1 (* Base Case *)
ELSE f := n * f(n-l) (* Recursive Case *)

END;
Function f calls itself with parameter n-1 when n is not equal to 0. This

recursive process will eventually stop when n reaches 0.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

Appendix B Consent Form

Consent Form

You are invited to participate in a study of how student's learn recursion. We are

studying the relationship between learning recursion and an individual’s learning style. If you

decide to participate, you will be asked to fill out a leaming-style inventory which takes about ten

minutes. This permission form allows us to obtain your examination scores in this course. Any

information that is obtained remains confidential.

Your decision whether or not to participate does not prejudice your future relations with

The University of Texas at Austin. If you decide to participate, you are free to discontinue

participation at any time without prejudice.

If you have any questions, please ask us: Dr. Nell Dale, 471-7316, Instructor Suzy

Gallagher, Dr. Lowell Bethel and Cheng-Chih Wu, 471-7334. We will be happy to answer your

questions.

You may have a copy of this form to keep if you wish.

Your signature indicates that you have read the information provided above and have

chosen to participate.

Signature Date ID number

Please Print Your Name Here Signature of Investigator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

Appendix C Scrambled Learning-Style Inventory 1985

Leaming-Style Inventory
N am e_______________________________ ID #__________________________

INSTRUCTIONS
O n the follow ing you will be asked to complete 12 sentences. Each h as four endings. Rank the endings for each

sentence according to how well you think each one fits w ith how you w ould go about learning som ething. Try to recall
some recent situations w here you had to leam som ething new , perhaps in your job o r current classes. Then, using the
spaces provided, rank a “V for the sentence end ing that describes how y o u leam best, dow n to a "1" for the sentence
ending that seem s least like the w ay you w ould leam.
Be sure to rank all the endings for each sentence u n it Please do n o t m ik e Hw.

Example o f com pleted sentence set: _

0. W hen 1 leam : &£ I am happy. I am fast. Ji_ I am logical. _2. I am careful.

REMEBER: 4 » most like you
3 = second m ost like you
2 a third m ost like you
1 a least like you

AND: You a re ranking across, not dow n.

1. W hen I leam : __ I like to deal
w ith m y feelings.

__ I like to watch
and listen.

__ I like to think
about ideals.

__ I like to be doing
things.

2. I am best when: __ / listen and watch
carefully .

__ I rely on logical
th in k in g .

__ 1 work hard to get
things done.

__ I trust m y hunches
and feelings.

3. W hen I am learning: __ I tend to reason
things out.

__ I am responsible
about things.

__ I have strong
feelings and
reactions.

__ I am quiet and
reserved.

4. I leam by: __ doing. __ fee ling . __ watching. __ th inking .

5. W hen I leam : __ I am open to new
experiences.

__ 1 look a t all sides
of issues.

__ I like to analyze
things, break
them dow n into
their parts.

__ I like to try
things out.

6. When I am learning: __ I am an observing
person.

__ I am a logical
person.

__ I am an active
person.

__ I am an intuitive
person.

7. 1 leam best from: __ rational theories. __ a chance to try out
and practice.

__ personal
re la tionsh ips.

__ observation.

S. IVhen I learn: __ I like to see
results from m y
work.

__ I feel personally
involved in
things.

_ I take m y time
before acting.

__ I like ideas and
theories.

9 .1 leam best when: __ I rely on my
feelings.

__ I rely on my
observations.

__ I rely on m y
ideas.

__ I can try things
ou t for myself.

10. When I am learning: __ I am a reserved
person.

__ 1 am a rational
person.

__ I am a responsible
person.

__ I am an accepting
person.

11. W hen I leam : __ I evaluate things. __ I like to be active. __ I get involved. __ I like to observe.

12. 1 learn best whew __ 1 am practical. __ 1 am receptive __ I am careful. __ I analyze ideas.
and open-minded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

134

Appendix D Item Format for the Scrambled LSI-1985

Item Column 1 Column 2 Column 3 Column 4

1 CE RO AC AE
2 RO AC AE CE
3 AC AE CE RO
4 AE CE RO AC
5 CE RO AC AE
6 RO AC AE CE
7 AC AE CE RO
8 AE CE RO AC
9 CE RO AC AE
10 RO AC AE CE
11 AC AE CE RO
12 AE CE RO AC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

Appendix E Concrete Instructional Material

Objectives
1. To understand the definition of recursion
2. To read and understand recursive programs (Recognition)
3. To generate base cases and recursive cases of a recursive function

(Generalization)

1. Introduction
A. Use Russian Dolls as the literal metaphor to convey the concept of

recursion.
B. Define the Base Case and Recursive Case

2. Recursion in Pascal
Example 1 Factorial Problem

Write a recursive function to calculate n!.
A. Show the solved recursive program
B. Identify the base case and recursive case
C. Use Block Tracing Diagram to trace the result of 3!

3. Designing Recursive Algorithms
A. Understand the problem
B. Determine the size of the problem to be solved
C. Determine the base case(s)
D. Determine the recursive case(s)

4. Verification
Block Tracing Diagram to trace the solved program:

A. Trace base case
B. Trace a small size of recursive case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

5. Examples

Example 2 Summing Problem
A-Problem Specification: Write a recursive function to calculate the result of

1 + 2 + 3 +... + N.
B. Analysis and Design: Determine the size, base case(s), and recursive

case(s) of the problem.
C. Implementation: Complete the recursive program.
D. Verification: Trace both base case(s) and recursive case(s) using Block

Tracing Diagram.

Example 3 Power Problem
A. Problem Specification: Write a recursive function to calculate a positive

integer to a positive power. (Xl = X; X ^ = X * X ^-l)
B. Analysis and Design: Two parameters are required in this problem, which

one is the size of the problem? Determine the base case(s) and recursive
case(s).

C. Implementation: Complete the recursive program.
D. Verification: Trace both base case(s) and recursive case(s) using Block

Tracing Diagram.

6. Elaboration and Conclusion
The mechanism of the recursion is the same in the following situations:

A. Many base cases and/or many recursive cases
B. Recursive Procedures
C. Structured Variables, e.g., arrays or linked list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137

Appendix F Examples of Block Tracing Diagram

Russian Dolls

Q: How many Dolls do you have?

A: Myself + The # of Dolls inside me
Q: How many Dolls do you have?
A: Myself + The # of Dolls inside me

Q: How many Dolls do you have?

A: Mvseif + The #... •
Q: How manv Dolls...?

A: Myself + The #....
No More

Tracing Fact(3)

Fact (3)
BEGIN

IF N = 0 THEN Fact := 1
ELSE Fact := N • Fact (N • 1)

BEGIN
IF N =0 THEN Fact:= 1

ELSE Fact := N * Fact (N • 1)
BEGIN

IF N= 0 THEN Fact := 1
ELSE Fact := N * Fact (N-l)

BEGIN
IF N= 0 THEN Fact := 1

ELSE —
END:

END:
END:

END:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

138

Appendix G Transparencies for Concrete Instructional Material

Russian Dolls

Q: How many Dolls do you have?

A: Myself + The # of Dolls inside me
Q: How many Dolls do you have?
A: Myself + The # of Dolls inside me

Q: How many Dolls do you have?

A: Myself + The # ... •
QiHow njan^D olls^^

A: Myself+ The#....
No More

Concrete 1

Recursion

• A problem is solved in terms of a smaller version of itself.

• An important concept in Programming Sc Problem Solving

O bservationa from the Russian Dolls

• Recursively calls a small version of itself

• Eventually the recursive calk stop

• Return the results to the calling functions

Concrete 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

139

Recursion in Rascal

PROGRAM RecuFunCall (Input, Output);

FUNCTION Fact (N: Integer): Integer;

(* Compute the factorial of N (i.e. N !) *)

B EG IN

IF N n 0 THEN Fact .■* 1 (* Base Case*)

ELSE Fact N * Fact (N - 1) (* Recursive •)

END;

BEGIN

Writeln (Fact (0)); Writeln (Fact (3));

END;

Concrete 3

Tracing Fact(3)

Fact (3)_______________________________________
BEGIN

IF N = 0 THEN Fact := 1
ELSE Fact := N ♦ Fact (N -1)_________________

I BEGIN
IF N = 0 THEN Fact:= 1

ELSE Fact := N * Fact (N -1)_______
(BEGIN

IF N =0 THEN Fact:= l
ELSE Fact := N • Fact (N-l)

|BECIN
IF N= 0 THEN F a c t 1

ELSE___
I END;______________

I END; |
IEND; ~ |

END;_________________________ 1

Concrete 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140

Elements ot a Recursive Algorithm

• Size (or Parameter) of the problem

— Changed every recursive call

• Base (or Stop) Case(s)

— Recursive calls stop here

• Recursive (or General) Casete)

— A smaller version of itself

— Size steps toward the Base Case(s)

A problem is solved in term s of a smaller version of itself.

Concrete 5

How To Design a Recursive Program

1. Find the Recursive Definition

i.e. Decide the Size, Base Case(s) and Recursive Casets)

Example: N! = N * (N -1)* ____ *2*1; 0! = 1

• Size?

• Base Case(s) ?

The smallest or simplest easels) which can be solved directly

• Recursive Case(s) ?

How to represent F (N) in terms of a smaller version of itself?

Concrete 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

141

Fact (N) = 1, if N = 0 (Base Case)

N * Fact (N -1), if N > 0 (Recursive Case)

2. Pascal Program

FUNCTION FunName (<Slze») : :

BEGIN

IF <Basc Condiiion>

T H EN <Base Relation*----- (Base Case)

ELSE cRecursive Rclation> IRecu. Case)

END;

(A problem might have many Base and Recursive Cases)

3. Verification; Base Case (Fad(0)) and other cases (eg. Fad(3>).

Concrete 7

Sum 1 , 2 , N

Write a recursive function to calculate 1 + 2+ 3 +.. ...„+ (N -l) + N

1, Recursive Definition

• Size?

• Base Case?

• Recursive Case ?

(Size steps toward Base Case?)

Sum (N) = 1, if N = 1

= S u m (N -l) + N, if N > 1

Concrete 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

142

2, Pascal Program

FUNCTION Sum (_____): Integer;

BEGIN

IF

THEN

ELSE

END;

3. Verification

Sum (1) =

Sum (3) = Sum (2) + 3
= Sum (1) + 2 + 3

Concrete 9

Power of an Integer

Write a recursive function to calculate a positive integer to a

positive power, e.g. 32 = 3*3 = 9, 24 = 2 * 2 * 2 * 2 = 16

P o w (X , N) = X N = X * X » *X*X

1. Recursive Definition

•S ize?

• Base Case ?

• Recursive Case ?

(Size steps toward Base Case?)

Concrete 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

143

Pow(X,N)= X, 112sa

X *Pow (X ,N -l) if N > 1

2. Pascal Program

FUNCTION Pow (): Integer;

BEGIN

IF THEN

ELSE

END;

3, Veriftalton

Pow (5,1) = Pbw(3,4) =

Concrete 11

Tracing Pow (3, 4)

Pow (X, N) _________________________________
BEGIN

IF N = 1 THEN Pow:=X
ELSE Pow := X * Pow OL N-1>_________________

IBEGIN
IF N = I THEN Pow := X

ELSE Pow := X * Pow (X N-l)_______
[BEGIN

IF N=1 THEN Pow := X
ELSE Pow :«= X » Pow <X. N-l)

Ibegin
IF N = 1 THEN Pow :» X

ELSE___
I END;______________

I END; |
IEND;]

END;_________________________ |

Concrete 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144

Handshakes fcxample
Suppose N diplomats are at a party, and during the course of the

festivities each shakes hands with every other diplomat exactly once.

How many handshakes occur?

• Base Case

HS () =

• Recursive Case

HS<3) =

HS (4) =

HS(N) =

Concrete 13

More on Recursion

• Where is the Loop (U. WHILE, REPEAT, and FOR) ?

• Many Base Cases and Recursive Cases

— needs nested IF ... THEN... ELSE structure

• Recursive Procedure

— the same mechanism as in Function

• Recursion with Structured Variables

— such as array, linked list (pointer)

— works the same as in Simple Variable

Concrete 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

Appendix H Abstract Instructional Material

Objectives
1. To understand the definition of recursion
2. To read and understand recursive programs (Recognition)
3. To generate base cases and recursive cases of a recursive function

(Generalization)

1. Introduction
A. Use Mathematical Definition to introduce the concept of recursion.
B. Define the Base Case and Recursive Case

2. Recursion in Pascal
Example 1 Factorial Problem

Write a recursive function to calculate n!.
A. Show the solved recursive program
B. Identify the base case and recursive case
C. Use Mathematical Equation to trace the result of 3!

3. Designing Recursive Algorithms
A. Understand the problem
B. Determine the size of the problem to be solved
C. Identify the base case(s)
D. Identify the recursive case(s) using induction concept

4. Verification
Brief introduction of Mathematical Induction and use it

to argue the correctness of the solved program:
1. The program is correct for the base case

2. It is also correct for the recursive case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

5. Examples

Example 2 Summing Problem
A; Problem Specification: Write a recursive function to calculate the result of

1 + 2 + 3 +... + N.
B. Analysis and Design: Determine the size, base case(s), and recursive

case(s) of the problem.
C. Implementation: Complete the recursive program.
D. Verification: First, trace the result of Sum(3) using Mathematical

Equation, then, argue the correctness of the algorithm by Mathematical
Induction concept:
1. The algorithm is correct for the Base Case
2. The algorithm is correct for the Recursive Case

Example 3 Power Problem
A. Problem Specification: Write a recursive function to calculate a positive

integer to a positive power. (X^ = X; = X * X ^-l)
B. Analysis and Design: Two parameters are required in this problem, which

one is the size of the problem? Determine the base case(s) and recursive
case(s).

C. Implementation: Complete the recursive program.
D. Verification: Arguing the correctness of the algorithm by Mathematical

Induction concept:
1. Base case: Power(2,l)=2

2. Recursive Case: Power(2,N) = 2 * Power(2,N-l)

6. Elaboration and Conclusion
The mechanism of the recursion is the same in the following situations:

A. Many base cases and/or many recursive cases
B. Recursive Procedures
C. Structured Variables, e.g., arrays or linked list

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

Appendix I Transparencies for Abstract Instructional Material

Recursion

• An important concept in Programming Sc Problem Solving

• A mechanism for defining something in terms of a smaller

version of itself.

Example: Factorial function in mathematics

By definition 0! = 1

N! = N * (N -l)* (N -2)* _______ *2*1

3! =

Abstract 1

Recursive Definition

Fact <N) = 1, if N = 0 (Base Case)

N * Fact (N -1), if N > 0 (Recursive Case)

• Calculation

Fact(0) =

Fact (3) = 3 Fact (2)

= 3 * 2 • Fact (1)

= 3 * 2 * 1 * Fact (0)

= 3 . 2 • 1 • 1 = 6

• How does recursion work in a program?

Abstract 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

Recursive Function in Rascal

PROGRAM RecuFunCall (Input, Output);

FUNCTION Fact (N: Integer): Integer;

(* Compute the factorial of N (i.e. N !) *)

BEG IN

IF N n O THEN F o e t a l <* Base Case*)

ELSE Fact a N ' Fact IN - 1) (* Recursive *)

E N D ;

BEGIN

Writeln (Fact (0)); Writeln (Fact (3));

END;

Abstract 3

Elements of a Recursive Algorithm

• Size (or Parameter) of the problem

— Changed every recursive call

• Base (or Stop) Caseis)

— Recursive calls stop here

• Recursive (or General) Case(s)

— A smaller version of itself

— Size steps toward the Base Caseis)

A problem is solved in terms of a smaller version of itself.

Abstract 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149

How To Design a Recursive Program

1. Find the Recursive Definition

i.e. Decide the Size, Base Caseis) and Recursive Casets)

Example: N I s N 'C J - l) ’ *2*1; 0! = 1

•Size?

• Base Caseis) ?

The smallest or simplest casets) which can be solved directly

• Recursive Caseis) ?

Assume a smaller case(s) is true.

How to represent F (N) in terms of the smaller casefs) ?

Abstract S

Fad <N) = 1, if N = 0 (Base Case)

N * Fact (N -l) , if N > 0 (Recursive Case)

2. Pascal Program

FUNCTION FunNatne (<Slze> 1: :

BEGIN

IF <Base Condition>

THEN <Base Relation? [Base Casel

ELSE cRecursive Relation? [Recu. Case)

END;

• A problem might have many Base and Recursive Cases

Abstract 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150

3. Verification: Base Case<s) and Recursive Case(s)

Mathematical Induction: Prove the Base h Inductive Case(s)

• Base Case

F act(0) =

• Recursive Case (Inductive Case)

Assume Fact (N -1) = (N -1)1 is true,

FactOM) = N * Fact (N -1)

= n *(n - d ; = n i

Abstract 7

Sum 1 , 2 , N

Write a recursive function to calculate 1 + 2 + 3 +.. -...+ <N-1) + N

1. Recursive Definition

• Size?

• Base Case?

• Recursive Case ?

(Size steps toward Base Case?)

Sum (N) = 1, if N = 1

= Sum (N -1) -t- N, if N >1

Abstract 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

151

2. Pascal Program

FUNCTION Sum (______________): Integer;

BEGIN

IF ___________ THEN__________________

ELSE __________________________

END;

3. Verification

• Sum (1) = (Sum (3) = ?)

• Assume Sum (N -1) = 1 +2 + ... + (N -l) is true

Sum(N) = S um (N -l) + N = 1 +2 + ... + (N -1)+ N

Abstract 9

Power ot an Integer

Write a recursive function to calculate a positive integer to a

positive power, e.g. 32 = 3*3 = 9, 2* = 2 *2*2*2 = 16

1. Recursive Definition

• Size?

• Base Case ?

• Recursive Case ? (Size steps toward Base Case?)

Assume XN-1, how to represent XN in terms of XN-1?

Pow (X, N) = X, if N = 1

X * Pow (X, N -1), if N > 1

Abstract 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152

2,.P?wtl Program

FUNCTION Pow <______________): Integer;

BEGIN

IF ___________________

THEN __________________________

ELSE __________________________

END;

3. Verification

•Pbw (X,l> =

• Assume Pow (X, N-l) = XN-1 is true

Pow(X,N)= X*Pow<X,N-l) =

Abstract 11

Handshakes Example
Suppose N diplomats are at a party, and during the course of the

festivities each shakes hands with every other diplomat ecactly once

How many handshakes occur?

• Base Case

Handshake ()=

• Recursive Case

Suppose there are N -1 diplomats and let HaniShakt (N-l)

denote the number of handshakes that occur.

Then if one new diplomat arrives...

HandShake(N) =

Abstract 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

More on Recursion

• Where is the Loop (U. WHILE, REPEAT, and FOR) ?

• Many Base Cases and Recursive Cases

— needs nested IF ... THEN ... ELSE structure

• Recursive Procedure

— the same mechanism as in Function

• Recursion with Structured Variables

— such as array, linked list (pointer)

— works the same as in Simple Variable

Abstract 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

154

Appendix J Pretest

CS 304P - Review Test I - Fall 92

October 1,1992

NOTE: Correct responses are based on standard Pascal as presented in the
textbook. Record your answers on scantron form.

Multiple choice - choose the single best answer for each item
below. (2 points each)

1. Every Pascal program must include:
a. BEGIN and END
b. input and output
c. a t least one constant
d. at least one variable
e. all of the above

2. The Pascal data type which can represent only positive numbers is
a. char
b. integer
c. real
d. boolean
e. none of the above

3. Which of the following is a legal Pascal identifier for a vanable?
a. VALUES
b. big-number
c. program
d. Seco2d
e. none of the above

4. Given two integers as input, which of the following operators does not
return an integer result?

a. +
b. -
c. ‘
d. /
e. none of the above

5. The part of a computer that stores both programs and data is the
a. CPU
b. control unit
c. memory
d. software
e. interface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

155

Given the boolean variables A, B, C, and D, show the values of
expressions 6-9, if: A = FALSE, B = FALSE, C = TRUE, D = TRUE.

6 . (A OR B) AND (C OR D)
a. TRUE
b. FALSE
c. compile-time error
d. run-time error
e. not enough information

7. NOT A AND B AND (32 > 51)
a. TRUE
b. FALSE
c. compile-time error
d. run-time error
e. not enough information

8 . (7 > 4 OR 3) AND A
a. TRUE
b. FALSE
c. compile-time error
d. run-time error
e. not enough information

9. Which of the following CANNOT be a computer output device?
a. keyboard
b. magnetic tape drive
c. liquid crystal display terminal
d. laser printer
e. video display terminal

10. A step-by-step finite process for solving a problem is an
a. implementation
b. induction
c. altercation
d. algorithm
e. extension

11. Given the declaration VAR E: BOOLEAN; What is the value of the
expression (E OR NOTE)? (Assume E has been initialized).

a. TRUE
b. FALSE
c. E
d. NOTE
e. not enough information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

156

12. What is written by the statement denotes a space):
WRITE (SQR (0.32/2.0) :5:4)

a. 0.0256
b. _0.026
c. _0.0256
d. _0.03
e. error

13. Which of the following is a correct Pascal expression equivalent to:

(5.-3 Y) X — L-
4 Y - 5

a. (5 -Y + Y + YDIV4) DIV(Y-5)
b. (5 - 3) * Y / 4 * (1/ (Y - 5))
c. ((5 - (3 (Y))) / 4) * 1 / (Y - 5)
d. ((5 - (Y + (Y + (Y)))) / 4) / (Y - 5)
e. none of the above

14. Given the following declarations, which of the choices is a correct
Pascal statement?

VAR 11,12: INTEGER:
R1.R2: REAL;
C1.C2: CHAR:
B1.B2: BOOLEAN;

a. B1 AND B2 < 3 - 4
b. C1 AND TV OR R1 < R2
C. R1 < 3 + 11 -B 2 0R N 0T B 1
d. (Cl -> 'M') AND B2
e. all of the above

15. Which operator is evaluated FIRST in the following Pascal
expression?

A AND (B OR (X = Y)) AND (Z < 49)
a. the first AND
b. OR
c. =
d. the second AND
e. <

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

157

Questions 16-19 are based on the following program. This code
counts the question marks found in the input file, DATA.

PROGRAM TESTI (INPUT, OUTPUT, DATA);
VAR DATA: TEXT; CH: CHAR; NUM: INTEGER;
BEGIN

1
NUM > 0;
WHILE 2 DO

BEGIN
WHILE 3 DO

BEGIN
READ (DATA, CH);
IF CH - '7 THEN NUM NUM + 1

END;
 i _____

END
B^D.

of the following properly fills blank 1 above?
REWRITE(DATA);
RESET(DATA);
C H '?';
RESET(INPUT);
none of the above

17. Which of the following properly fills blank 2 above?
a. NOT EOF
b. NOTEOLN
c. C H - '?
d. NOT EOF(DATA)
e. none of the above

18. Which of the following properly fills blank 3 above?
a. NOT EOF(DATA)
b. NOT EOLN(DATA)
c. NOT (CH - '? ')
d. N U M -0
e. none of the above

19. Which of the following properly fills blank 4 above?
a. READ(DATA);
b. READLN(DATA);
c. RESET(DATA);
d. REWRITE(DATA);
e. none of the above

16. Which
a.
b.
c.
d.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158

20. Which operator is evaluated LAST in the following Pascal expression?
(12.5 * 3 - 4 2) / (1 9 + 432 DIV 6 6)

a. *
b. -
c. /
d. +
e. DIV

21. Which of the following is a correct Pascal equivalent of A < B?
a. NOT (A >m B)
b. A <> B
c. NOT (A > B)
d. A NOT > B
e. all of the above

22. Which of the following is a correct Pascal condition requiring both X
and Y to be at least 27?

a. X A ND Y > 2 7
b. X > 2 7 ANDY> 27
c. NOT (X < 2 7) OR NOT (Y < 27)
d. NOT ((X < 27) OR (Y < 2 7))
e. none of the above

23. What are the values of the variables after execution of the following
statements? L, M, N and P are integer variables.

L > 12 + 5;
M L - 8;
N > L + M * 2;
M > 17;
P : = L + M + N;

a. L is 17; M is 9; N is 68; P is 94
b. L is 17; M is 26; N is 69; P is 112
c. L is 17; M is 17; N is 34; P is 68
d. L is 17; M is 17; N is 35: P is 69
e. error

24. The purpose of testing should be to show
a. that the program runs correctly on the class data
b. the absence of errors
c. the presence of errors
d. that the program compiles correctly
e. none of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

159

Given the declarations, read statements, and file, DATA, below,
what is the value of the variables after executing the
statements in numbers 25-28?
DECLARATIONS: DATA (each _ represents a blank space):

VAR num1, num2 : INTEGER: 23_9B_1
ch1, ch2 : CHAR; FR_725
DATA: TEXT; _96_N_34

25. RESET(DATA);
READ (DATA, num1, num2, ch1, ch2);

a. num1 - 2, num2 - 3, ch1 = ch2 - '9'
b. num1 - 23, num2 » 9, ch1 - 'B', ch2 -
c. num1 - 23, num2 » 9B, ch1 = ch2 - '1'
d. num1 - 23, num2 - 9, ch1 - 'F , ch2 - 'R'
e. error

26. RESET(DATA);
READ (DATA, ch1);
READLN (DATA);
READ (DATA, ch2, num1, num 2);

a. num1 - 9, num2 = 1, ch1 = '2', ch2 = 'F
b. num1 - 9, num2 » 1, ch1 « '2 ', ch2 - ’3*
c. num1 ■ 725, num2 - 96, ch1 - '23', ch2 »
d. num1 - 23, num2 - 9, ch1 - 'B', ch2 -
e. error

27. RESET(DATA);
READLN (DATA, ch1, ch2, numl);
READ (DATA, ch2, ch1);
READ (DATA, numl, num2);

a. numl - 1, num2 - 725, ch1 » '2 ', ch2 - '3'
b. numl = 725, num2 * 96, ch1 = 'R', ch2 = 'F
c. numl » 96, num2 » 725, ch1 » 'F , ch2 = 'R'
d. numl - 96, num2 - 34, ch1 - ch2 »
e. error

28. RESET (DATA);
READLN (DATA, numl, ch1);
READLN (DATA, ch1, ch2. num2);
READ (DATA, ch1, numl, ch2, ch1, ch2);

a. numl = 96, num2 =* 725. ch1 = 'N', ch2 =
b. numl = 23, num2 = 725, ch1 = ch2 = 'R'
c. numl = 23, num2 » 725. ch1 = 'F , ch2 » '4 '
d. numl = 96, num2 = 725, ch1 = '3', ch2 = '4'
e. error

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160

What is printed by the following code, given the values in 29*35.

IF X < - Y THEN
IF X < Y THEN

WRITELN ('RED')
ELSE
WRITELNCBLUE’)

ELSE IFX<Y THEN
WRITELNfGREEN')
ELSE
WRITELN (’YELLOW)

29. X - 12, Y - 34 a. BLUERED
b. RED
c. GREEN
d. YELLOW
e. none of the above

30. X - 6, Y - -9 a. RED
b. GREEN
c. YELLOW
d. GREENYELLOW
e. none of the above

31. X - 51, Y - 51 a. RED
b. BLUE
c. GREEN
d. BLUEYELLOW
e. none of the above

32. Given the following program, which line contains code which will
cause a compiler error?

1 PROGRAM REVIEWI (INPUT, OUTPUT);
2 VAR A, B : REAL;
3 BEGIN
4 A > 7; B 6.25;
5 IF A + B > 10
6 THEN WRITELN (’BIG NUMBERS’);
7 ELSE WRITELN (’LITTLE NUMBERS’)
8 END.

a. line 2
b. line 4
c. line 6
d. line 8
e. all of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

161

33. What is the proper loop invariant for the following code segment?
Count > 1;
Sum :=0;
WHILE Count < -B DO

BEGIN
Sum := Sum + A;
Count > Count + 1

END;
a. Sum = (Count - 1) * A
b. Count > - 1 AND Count <« B + 1
c. (Sum - (Count -1) * A) AND (Count > -1 AND Count < - B + 1)
d. (Sum - (Count -1) * A) AND (Count > - 1 AND Count < - B)
e. none of the above

34. Which of the following statements sets CubeEven to TRUE if the cube
of Number is even and FALSE otherwise?

a. IF ((Number * Number * Number MOD 2) = 0) - TRUE
THEN Cube EvenTRUE
ELSE CubeEvenFALSE;

b. IF ((Number * Number * Number) MOD 2 - 0)
THEN Cub eEvenTRU E
ELSE CubeEvenFALSE;

c. CubeEven > (Number * Number * Number MOD 2 » 0);
d. all of the above
e. none of the above

35. Which of the following is syntactically invalid?
(All variables are integers and have been initialized)

1. A Constant;
2. B :=» 5.5 MOD 6;
3. C a t C a t + Dog;

a. 1 only
b. 2 only
c. 3 only
d. 1 and 2 only
e. all are valid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

162

Appendix K Posttest

Name__________________ ID#_____

Have you studied recursion before? Yes No

Please show your work

Question 1
Consider the Pascal function described below:

FUNCTION F (N: Integer): Integer,
BEGIN

IF N = 0
THEN F := 1
ELSE F := F (N -1) + 2

END;

1. What is the value of F (1)?________
2. What is the value of F (3)?________

Question 2
Complete the following recursive function which performs multiplication

using addition, (e. g., 5 X 3 = 5 + 5 + 5)

FUNCTION Multiply (P, Q: Integer): Integer;
(* Precondition: P and Q are defined and Q > 0 *)
(* Postcondition: Returns P X Q *)

BEGIN
IF ____________________

THEN________________________________
ELSE ___________________________________

END;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

163

Ouestion_3
What is the output of the following Pascal procedure?

PROCEDURE PrintNum (N: Integer);
BEGIN

IF N = 0
THEN (* do nothing *)
ELSE BEGIN

PrintNum (N -1);
Write (N)

END
END;

1. What is the output of PrintNum (1)? __________
2. What is the output of PrintNum (3)? __________

Question 4
Complete the following recursive function which generates the Nth number in

the Fibonacci sequence, which is defined to b e : 1 ,1 ,2 ,3 ,5 ,8 ,13 ,....

FUNCTION Fib (N: Integer): Integer;
(* Precondition: N is defined and N >= 1 *)
(* Postcondition: Returns the Nth number of the sequence *)

BEGIN

IF ____________________

THEN Fib := 1

ELSE ___________________________________
END;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

164

Appendix L Retention Test 1

1. Given the following function, what is the returned value of F(4)?
FUNCTION F (N: Integer): Integer,
BEGIN

IF N = 0
THEN F := 1
ELSE F := F (N - 2) + 1

END;
a. 1
b. 2
c. 3
d. 4
e. none of the above

2. The following function calculates the sum of successive even integers starting
at 0 and ending at N (N is an even integer).
(for example SUM(6) = 12, (6 + 4 + 2 + 0))

FUNCTION Sum (N: Integer): Integer,
BEGIN (* Sum *)

IF N = 0
THEN Sum := 0
ELSE Sum :=_______________________

END;
Which of the following properly fills the blank above?

a. Sum (N) + 2
b. Sum (N -1) + 2
c. Sum (N -1) + N
d. Sum (N - 2) + 1
e. Sum (N - 2) + N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165

3. Given the following function, what value is returned by Fib (5)?
FUNCTION Fib (N: Integer): Integer;
BEGIN

IF (N = 1) OR (N = 2)
THEN Fib := 1
ELSE Fib := Fib (N - 1) + Fib (N - 2)

END;
a. 5
b. 3
c. 2
d. 1
e. none of the above

Questions 4 and 5 refer to the type definition and recursive function below which
calculates the value of a positive integer to a non-positive power. Note = 1;
and XN = l/X'N, if N < 0. (for example X*5 = l/x5; 2-3 = 1/23 = 8)

TYPE Negatives = -MaxInt..O;
FUNCTION NegPower (X: Integer; N: Negatives): Real;
BEGIN

IF N = 0
THEN NegPower :=______1____________
ELSE NegPower :=______2____________

END;

4. Which of the following properly fills blank 1 above?
a. 0
b. 1
c. -1
d. X
e. NegPower (X, N -1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

166

5. Which of the following properly fills blank 2 above?
a. NegPower (X, N -1)
b. NegPower (X, N -1) * X
c. NegPower (X, N + 1) * X
d. (NegPower (X, N - 1)/X)
e. (NegPower (X, N + 1) / X)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

167

Appendix M Retention Test 2

1. Given the following function, what is the value returned by F(-2)?
FUNCTION F (N: Integer): Integer;

BEGIN
IF N = 0

THEN F := 1
ELSE F := F (N + 1) + 1

END;
a. -3
b. 1
c. 2
d.3
e. none of the above

2. Given the following function, what is the value returned by F(3,2)1
FUNCTION F (P, Q: Integer): Integer,

BEGIN
IF Q = 1

THEN F := P
ELSE F := P + F(P, Q-l)

END;
a. 3
b. 5
c. 6
d. 9
e. none of above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

168

Questions 3 and 4 refer to the following function which generates the Nth integer
the sequence: 0, 3 ,6 ,9 ,12 (For example, GenNum(l) generates 0; and
GenNum(3) generates 6)

FUNCTION GenNum (N : Integer): Integer;
BEGIN

IF N = 1
THEN GenNum :=_________ 1_________
ELSE GenNum :=_________2_________

END:

3. Which of the following properly fills the blank 1 above?
a. 0
b. 1
c. 3
d. GenNum(N-l)
e. GenNum(N-3)

4. Which of the following properly fills the blank 2 above?
a. GenNum(N-l) + GenNum(N-2)
b. GenNum(N-l) + N
c. GenNum(N-3) + N
d. GenNum(N-l) + 3
e GenNum(N-3) + 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169

5. The following procedure RevPrintArray writes out all the elements in an array
in reverse order.

TYPE Array Type = Array [1 ..Length] of Integer;

PROCEDURE RevPrintArray (A: ArrayType; Length: Integer);
BEGIN

IF Length >0 THEN
BEGIN

END
END;

Which of the following properly fills the blank above?

a. Writeln(A[l]); RevPrintAiray(A, Length-1)
b. Writeln(A[Length]); RevPrintArray(A, Length-1)
c. RevPrintArray(A, Length-1); Writeln(A[Length])
d. RevPrintAiray(A, Length); Writeln(A[Length-l])
e. none of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

Aho, A. V., & Ullman, J. D. (1992). Foundations o f computer science. New York,
NY: W. H. Freeman and Company.

Allinson, C. W., & Hayes, J. (1990). Validity of the Learning Style Questionnaire.
Psychological Reports, 67 ,859-866.

Anderson, J. R. (1983). The Architecture o f Cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R., Farrell, R., & Sauers, R. (1984). Learning to program in LISP.
Cognitive Science, 8, 87-129.

Anzai, Y., & Uesato, Y. (1982). Learning recursive procedures by middle school
children. Proceedings o f the Fourth Annual Conference o f the Cognitive
Science Society, 100-102.

Atkinson, G. Jr., Murrell, P. H., & Winters, M. R. (1990). Career personality types
and learning styles. Psychological Reports, 6 6 ,160-162.

Atkinson, G., Jr. (1988). Reliability of the Learning Style Inventory 1985.
Psychological Reports, 62,755-758.

Atkinson, G., Jr. (1989). Kolb's Learning Style Inventory 1985: test-retest deja vu.
Psychological Reports, 64,991-995.

Ausubel, D. P. (1968). Educational Psychology: a Cognitive View. New York:
Holt, Rinehart & Winston.

Ausubel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational Psychology: a
Cognitive View (2nd ed.). New York: Holt, Rinehart & Winston.

Bennett, K. B. (1984). The effect of display design on the user's mental model of a
perceptual database system. (Doctoral dissertation, The Catholic
University of America, 1984). Dissertation Abstracts International, 45,
1604B.

Bhuiyan, S. H., Greer, J. E., & McCalla, G. I. (1989). Mental models of recursion
and their use in the SCENT programming advisor. In S. Ramani, R.
Chandrasekar, & K. R. S. Anjaneyulu (Eds.), Knowledge-Based Computer
Systems, KBCS 89 (pp. 135-144). Bombay, India.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

171

Bhuiyan, S. H., Greer, J. E., & McCalla, G. I. (1991). Characterizing,
Rationalizing, and Reifying Mental Models of Recursion. SK., Canada:
University of Saskatchewan, Laboratory for Advanced Research in
Intelligent Educational Systems.

Bonar, J., & Soloway, E. (1985). Pre-programming knowledge: a major source of
misconceptions in novice programmers. Human-Computer Interaction, 1,
133-161.

Borgman, C. L. (1984). The User’s Mental Model of an Information Retrieval
System: Effects on Performance. (Doctoral dissertation, Stanford
University, 1983). Dissertation Abstracts International, 45,4-AB.

Bostrom, R. P., Olfman, L., & Sein, M. K. (1987). The importance of individual
differences in end-user training: The case for learning style. Proceedings
of the 1988 ACM SIGCPR Conference on the Management o f Information
Systems Personnel, 133-141.

Bowman, B. C., & Seagraves, K. (1985). Picturing recursion. The Computing
Teacher, 72(7), 28-32.

Brewer, W. F. (1987). Schemas versus mental models in human Memory. In P.
Morris (Ed.), Modeling Cognition (pp. 187-197). New York: John Wiely
& Sons.

Carrier, C. A., Williams, M. D., & Dalgaard, B. F. (1988). College students'
perceptions of notetaking and their relationship to selected learner
characteristics and course achievement. Research in Higher Education,
28(3), 223-239.

Carroll, J. M., & Olson, J. R. (Eds.). (1987). Mental Models in Human-Computer
Interaction: Research Issues about What the User of Software Knows.
Washington, DC: National Academy Press.

Catalanello, R. & Bremenstuhl, D. (1978). An investigation of innovative teaching
methodologies. Academy o f Management Proceedings, 18-22.

Cavaiani, T. P. (1989). Cognitive style and diagnostic skills of student
programmers. Journal o f Research on Computing in Education, 22 ,411-
420.

Collins, A. (1985). Component models of physical systems. Proceedings of the
Seventh Annual Conference o f the Cognitive Society, 80-89.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

Corman, L. S. (1986). Cognitive style, personality type, and learning ability as
factors in predicting the success of the beginning programming student.
SIGCSE Bulletin, 18(4), 80-89.

Cornwell, J. M., Manfredo, P. A., & Dunlap, W. P. (1991). Factor analysis of the
1985 revision of Kolb's Learning Style Inventory. Educational and
Psychological Measurement, 51(2), 455-463.

Dale, N. B., & Lilly, S. C. (1991). Pascal Plus Data Structures (3rd ed.).
Lexington, MA: D. C. Heath.

Dale, N. B., & Weems, C. (1991). Pascal (3rd ed.). Lexington, MA: D. C. Heath.

Davidson, G. V. (1990). Matching learning styles with teaching styles: Is it a
useful concept? Performance and Instruction, 29(4), 36-38.

Davidson, G. V., Savenye, W. C., & Qrr, K. B. (1992). How do learning styles
relate to performance in a computer applications course? Journal o f
Research on Computing in Education, 24(3), 348-358.

De Kleer, J., & Brown, J. S. (1981). Mental models of physical mechanisms and
their acquisition. In J. R. Anderson (Ed.), Cognitive Skills and their
Acquisition (pp. 285-309). Hillsdale, NJ: Erlbaum.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal o f
Educational Computing Research, 2(1), 57-73.

Du Boulay, B., O’Shea, T., & Monk, J. (1981). The black box inside the glass box:
presenting computing concepts to novices. International Journal o f Man-
Machine Studies, 14,237-249.

Duit, R. (1991). On the role of analogies and metaphors in learning science.
Science Education, 75(6), 649-672.

Eliot, J., Lovell, K., Dayton, C. M., & McGrady, B. F. (1979). A further
investigation of children's understanding of recursive thinking. Journal of
Experimental Child Psychology, 2 8 ,149-157.

Er, M. C. (1984). On the complexity of recursion in problem-solving.
International Journal o f Man-Machine Studies, 20,537-544.

Ferrel, B. G. (1983). A factor analytic comparison of four learning styles
instruments. Journal o f Educational Psychology, 75(1), 33-39.

Ford, G. (1982). A framework for teaching recursion. SIGCSE Bulletin, 14(2), 32-
39.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

173

Ford, G. (1984). An implementation-independent approach to teach recursion.
SIGCSE Bulletin, 16(1), 213-216.

Foss, D. J., Rosson, M. B., & Smith, P. L. (1982). Reducing manual labor: An
experimental analysis of learning aids for a text editor. Proceedings o f the
CHI '82 Conference on Human Factors in Computer Systems, 332-336.

Galletta, D. F. (1986). A Learning Model of Information Systems: The effects of
Orienting Materials, Ability, Expectations and Experience on
Performance, Usage and Attitudes. (Doctoral Dissertation, University of
Minnesota, 1985). Dissertation Abstracts International, 46 ,2008A.

Geiger, M. A. (1991). Performance during the first year of college: Differences
associated with learning styles. Psychological Reports, 68 ,633-634.

Gentner, D. (1983). Structure-mapping: a theoretical framework for analogy.
Cognitive Science, 7 ,155-170.

Gentner, D. (1988). Analogical inference and analogical access. In A. Prieditis
(Ed.), Analogica (pp. 63-88). Las Altos, CA: Morgan Kaufmann.

Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming Crowds: mental
models of electricity. In D. Gentner & A. L. Stevens (Eds.), Mental
Models (pp. 99-129). Hillsdale, NJ: Erlbaum.

Greer, J. E. (1987). Empirical comparison of techniques for teaching recursion in
introductory computer science. (Doctoral dissertation, The University of
Texas at Austin, 1987). Dissertation Abstracts International, 4 8 ,1415B.

Gregorc, A. F. (1984). Gregorc Style Delineator: Development Technical and
Administration Manual. Columbia, CT: Gregorc Associates, Inc.

Halasz, F., & Moran, T. P. (1982). Analogy consider harmful. Proceedings o f the
CHI'82 Conference on Human Factors in Computer Systems, 383-386.

Henderson, P. B. & Romero, J. R. (1989). Teaching recursion as a problem
solving tool using standard ML. SIGCSE Bulletin, 27(1), 27-31.

Jagodzinski, A. P. (1983). A theoretical basis for the representation of on-line
computer systems to naive users. International Journal o f Man-Machine
Studies, 18,215-252.

Johnson-Laird, P. N. (1980). Mental models in cognitive science. Cognitive
Science, 4 ,71-115.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

174

Johnson-Laiid, P. N. (1983). Mental Models. Cambridge, MA: Harvard University
Press.

Kahney, H. (1983). What do novices know about recursion. Proceedings o f the
CH I'83 Conference on Human Factors in Computer Systems, 235-239.

Karrer, U. (1988). Comparison o f Learning Style Inventories (LSI). (ERIC
Document Reproduction Service No. ED 296 713)

Katz, N. (1986). Construct validity of Kolb's Learning Style Inventory, using
factor analysis and Guttman's smallest space analysis. Perceptual and
Motor Skills, 6 3 ,1323-1326.

Keefe, J. W. (1987). Learning Style Theory and Practice. Reston, VA: NASSP.

Kemeny, J. G., & Kurtz, T. E. (1985). Back to BASIC: The History, Corruption
and Future of the Language. Reading, MA: Addison-Wesley.

Kessler, C. M., & Anderson, J. R. (1986). Learning flow of control: recursive and
iterative procedures. Human-Computer Interaction. 2 , 135-166.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to
operate a device. Cognitive Science, 8 ,255-273.

Koffman, E. B. (1992). Pascal (4th ed.). Reading, MA: Addison Wesley.

Kolb, D. A. (1976). Learning Style Inventory: Technical Manual. Boston, MA:
McBer and Company.

Kolb, D. A. (1984). Experiential Learning. Englewood Cliffs, NJ: Prentice Hall.

Kolb, D. A. (1985). Learning Style Inventory. Boston, MA: McBer and Company.

Kruse, R. L. (1982). On teaching recursion. SIGCSE Bulletin, 14(1), 92-96.

Kurland, D. M. & Pea, R. D. (1983). Children's mental models of recursive
LOGO programs. Proceedings o f the 5th Annual Conference o f the
Cognitive Science Society, Session 4,1-5.

Lee, P. C., & Mitchell, M. A. (1985). Demystifying LOGO recursion: a storage
process model of embedded recursion. Computers in the Schools, 2(2,3),
197-208.

Luiten, J., Ames, W„ & Ackerson, G. (1980). A meta-analysis of the effects of
advance organizers on learning and retention. American Educational
Research Journal, 17,211-218.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

175

Marshall, J. C., & Merritt, S. L. (1985). Reliability and construct validity of
alternate forms of Learning Style Inventory. Educational and
Psychological Measurement, 45 ,931-937.

Martin, M. R. (1985). Recursion — a powerful, but often difficult idea. Computers
in the Schools, 2(2,3), 209-217.

Mayer, R. E. (1979). Can advance organizers influence meaningful learning?
Review o f Educational Research, 49 ,371-383.

Mayer, R. E. (1981). The psychology of how novices learn computer
programming. Computing Surveys, 13 ,121-141.

Mayer, R. E. (1982). Diagnosis and Remediation o f Computer Programming Skill
fo r Creative Problem Solving. Volume 1: Description o f Research
Methods and Results. Final Report. Santa Barbara, CA: University of
California. (ERIC Document Reproduction Service No. ED 230 199)

Mayer, R. E. (1985). Learning in complex domains: A cognitive analysis of
computer programming. In G. Bower (Ed.), Psychology o f Learning and
Motivation, Vol. 19 (pp; 89-130). New York: Academic Press.

Mayer, R. E. (1987). Cognitive aspects of learning and using a programming
language. In J. M. Carroll (Ed.), Interfacing Thought: Cognitive Aspects o f
Human-Computer Interaction (pp. 59-79). Cambridge, MA: MIT press.

Mayer, R. E. (1988). Using conceptual models to teach BASIC computer
programming. Journal o f Educational Psychology, 80(3), 291-298.

McCarthy, B. (1980). The 4MAT System. Oak Brook, IL: Excel, Inc.

McCraken, D. D. (1987). Ruminations on computer science curricula.
Communications of the ACM, 30(1), 3-4.

Messick, S. (1976). Individuality in Learning. San Francisco, CA: Jossey-Bass.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston
(Ed.), The Psychology o f Computer Vision (pp. 211-277). New York:
McGraw-Hill.

Mumane, J. (1991). Models of recursion. Computers Education, 16(2), 197-201.

National Association of Secondary School Principals (NASSP). (1979). Student
Learning Styles — Diagnosing and Prescribing Programs. Reston, VA:
Author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

176

Newell, A., & Card, S. K. (1985). The prospects for psychological science in
human-computer interaction. Human-Computer Interaction, 1 ,209-242.

Norman, D. A. (1983). Some observation of mental models. In D. Gentner & A.
L. Stevens (Eds.), Mental Models (pp. 7-14). Hillsdale, NJ: Erlbaum.

Norman, D. A. (1986). Cognitive engineering. In D. A. Norman & S. W. Draper
(Eds.), User Centered System Design: New Perspectives on Human-
Computer Interaction (pp. 31-61). Hillsdale, NJ: Erlbaum.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New
York, NY: Basic Books.

Pinto, J. K., & Geiger, M. A.(1991). Changes in leaming-style preferences: A
prefatory report of longitudinal findings. Psychological Reports, 6 8 ,195-
201.

Pirolli, P. L. (1986a). Problem Solving by Analogy and Skill Acquisition in the
Domain o f Programming. (Doctoral dissertation, Camegie-Mellon
University, 1985). Dissertation Abstracts International, 46 ,4048B.

Pirolli, P. L. (1986b). A cognitive model and computer tutor for programming
recursion. Human-Computer Interaction, 2 ,319-355.

Pirolli, P. L., & Anderson, J. R. (1985). The role of learning from examples in the
acquisition of recursive programming skills. Canadian Journal of
Psychology, 39,240-272.

Reading-Brown, M. S., & Hayden, R. S. (1989). Learning styles-liberal arts and
technical training: What's the difference? Psychological Reports, 64,507-
518.

Reiff, J. C. (1992). What Research Says to the Teacher: Learning Styles.
Washington, DC: National Educational Association.

Rohl, J. S. (1984). Recursion via Pascal. New York: Cambridge University Press.

Ruble, T. L„ & Stout, D. E. (1990). Reliability, construct validity, and response-
set bias of the revised Leaming-Style Inventory (LSI-1985). Educational
and Psychological Measurement, 50(3), 619-629.

Ruble, T. L., & Stout, D. E. (1991). Reliability, classification stability, and
response-set bias of the revised Leaming-Style Inventory (LSI-1985).
Educational and Psychological Measurement, 51(2), 481-489.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

177

Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J.
Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical Issues in Reading
Comprehension (pp. 33-58). Hillsdale, NJ: Erlbaum.

Rumelhart, D. E., & Norman, D. A. (1981). Analogical processes in learning. In J.
R. Anderson (Ed.), Cognitive Skills and their Acquisition (pp. 335-359).
Hillsdale, NJ: Erlbaum.

Sasse, M.-A. (1991). How to t(r)ap users' mental models. In M. J. Tauber & D.
Ackermann (Eds.), Mental Models and Human Computer Interaction 2
(pp. 59-79). New York, NY: Elsevier.

Schank, R. C., & Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding.
Hillsdale, NJ: Erlbaum.

Sein, M. K. (1988). Conceptual Models in Training Novice Users of Computer
Systems: Effectiveness of Abstract vs. Analogical Models and Influence of
Individual Differences. (Doctoral dissertation, Indiana Unversity, 1988).
Dissertation Abstracts International, 4 9 ,880A.

Sein, M. K., & Bostrom, R. P. (1989). Individual differences and conceptual
models in training novices users. Human-Computer Interaction, 4, 197-
229.

Sein, M. K., & Bostrom, R. P., & Olfman, L. (1987). Conceptual models in
training novice users. In H. J. Bullinger & B. Shackle (Eds.), Human-
Computer Interaction - INTERACT '87 (pp. 861-867). New York, NY:
Elsevier.

Sims, R. R., Veres, J. G., & Shake, L. G. (1989). An exploratory examination of
the convergence between the Learning Styles Questionnaire and the
Learning Style Inventory II. Educational and Psychological Measurement,
49 ,227-233.

Smith, D. M., & Kolb, D. A. (1986). User's Guide for the Learning Style
Inventory: A Manual for Teachers and Trainers. Boston, MA: McBer and
Company.

Snow, R. E. (1986). Individual differences and the design of educational
programs. American Psychologist, 4/(10), 1029-1039.

Tucker, A. B. (Ed.). (1991). A summary of the ACM/IEEE-CS joint curriculum
task force report: Computing Curricula 1991. Communications o f the
ACM, 34(6), 68-84.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

178

Turkle, S. (1984). The Second Self: Computers and Human Spirit. New York, NY:
Simon & Schuster.

Van der Veer, G. C., & Felt, M. A. M. (1988). Development of mental models of
an office system: A field study on an introductory course. In G. C. van der
Veer & G. Mulder (Eds.), Human-Computer Interaction: Psychonomic
Aspects (pp. 251-272). New York: Springer-Verlag.

Van Merrienboer, J. J. G. (1988). Relationship between cognitive learning style
and achievement in an introductory computer programming course.
Journal o f Research on Computing in Education, 2 1 ,181-186.

Van Merrienboer, J. J. G. (1990). Instructional strategies for teaching computer
programming: Interactions with the cognitive style reflection-impulsivity.
Journal o f Research on Computing in Education, 23(1), 45-52.

Veres, J. G., Sims, R. R., & Locklear, T. S. (1991). Improving the reliability of
Kolb's revised learning style inventory. Educational and Psychological
Measurement, 51(1), 143-151.

Walsh, W. B., & Betz, N. E. (1985). Tests and Assessment. Englewood Cliffs, NJ:
Prentice-Hall.

West, C. K., Farmer, J. A., & Wolff, P. M. (1991). Instructional Design:
Implications from Cognitive Science. Englewood Cliffs, NJ: Prentice Hall.

Widenbeck, S. (1988). Learning recursion as a concept and as a programming
technique. SIGCSE Bulletin, 20(1), 275-278.

Widenbeck, S. (1989). Learning iteration and recursion from examples.
International Journal o f Man-Machine Studies, 3 0 ,1-22.

Wiersma, W., & Jurs, S. G. (1990). Educational Measurement and Testing (2nd
ed.). Needham Heights, MA: Allyn and Bacon.

Wilson, D. K. (1986). An investigation of the properties of Kolb's Learning Style
Inventory. Leadership and Organization Development Journal, 7(3), 3-15.

Wittrock, M. C. (1985). Learning science by generating new concepts from old
ideas. In L. H. T. West & A. L. Pines (Eds.), Cognitive Structure and
Conceptual Change (pp. 259-266). Orlando, FL: Academic Press.

Young, R. M. (1983). Surrogates and mappings: two kinds of conceptual models
for interactive devices. In D. Gentner & A. L. Stevens (Eds.), Mental
Models (pp. 35-52). Hillsdale, NJ: Erlbaum.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179

Zuboff, S. (1988). In the Age o f the Smart Machine. New York: Basic Books.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Vita

Cheng-Chih Wu was bom in TaiChung, Taiwan, R.O.C., on January 15,

1957, the son of Koan Wang Wu and Bor-Yeu Wu. He received a Bachelor of

Education in Industrial Education in 1981, and a Master of Education in Industrial

Education in 1985, from National Taiwan Normal University, Taiwan, R.O.C. He

worked as a lecturer in Department of Electronics at Hwa-Hsia Junior College,

Taipei, Taiwan, from 1985-1986. During the following three years, he was

employed as a teaching assistant and a lecturer in Department of Computer and

Information Education at National Taiwan Normal University. In September

1989, he entered the Graduate School of The University of Texas at Austin to

work on a doctoral degree in Computer Science Education. He is married to the

beautiful Shih-Ching Wang Wu in 1986 and has one son, Pei-Shin.

Permanent address: 7F, 5 -8 , Ln. 236, Sec. 5, Roosevelt Rd.

Taipei, Taiwan, R.O.C.

This dissertation was typed by the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

