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This study investigated how different types of conceptual models and 

cognitive learning styles influence novice programmers when learning recursion. 

A pretest-posttest, 2 X 2  (conceptual models X learning styles) factorial 

experimental design was implemented in order to study the problem. Two 

hundred thirty-seven students enrolled in an introductory computer science course 

at a major southwest research university served as the subjects for this study. 

Subjects were randomly assigned to either an abstract model group or a concrete 

model group and the groups were of approximately equal size. Different 

conceptual models (abstract or concrete) were used to present recursion to the two 

model groups. Within each model group, subjects were identified as either an
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abstract learner or a concrete learner based on their scores on the scrambled Kolb's 

Leaming-Style Inventory 1985. A posttest and two retention tests were 

administered after the treatment to compare students' performance in different 

groups. A pretest administered prior to the treatment was used to equate the 

variance caused by students' prior knowledge in the statistical analysis. The 

statistical procedure of two-way ANCOVA was employed to analyze all of the 

performance data.

The findings of this study are: Concrete conceptual models were better 

than abstract conceptual models in teaching recursion to novice programmers. 

However, the teaching effects weakened several weeks after classroom 

instruction. Novice programmers with abstract learning styles performed better 

than those with concrete learning styles when learning recursion. Finally, abstract 

learners did not necessarily benefit more from abstract conceptual models, and 

concrete learners did not necessarily benefit more from concrete conceptual 

models.

A replication study with a longer treatment period that covers more aspects 

of recursive programming is recommended for future research. Additional 

research needs to be conducted to better understand students' mental models of 

recursion. Furthermore, future research should investigate how the other 

dimension of Kolb's learning styles (i.e., active-reflective) relates to the 

instructional methods provided. It is also recommended that the relationship 

between the characteristic of learning tasks (or domains) and the matching of 

learning styles with conceptual models be investigated.
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Chapter 1 Introduction

1.1 Background

Recursion is basic to computer science, whether it is understood as a 

mathematical concept, a programming technique, or a way of problem-solving 

(McCracken, 1987). Understanding recursion is thought to be central in 

understanding complex data structures and program control (Rohl, 1984). 

Computer science educators have found that recursion is a very difficult concept 

for students to learn and teachers to teach (Ford, 1982, 1984; Henderson & 

Romero, 1989; Kurland & Pea, 1983; Widenbeck, 1989). Pirolli and Anderson 

(1985) argued that the lack of everyday analogies for recursion is what makes it so 

difficult to learn. Kurland and Pea (1983) found that students tend to develop an 

incorrect mental model of recursion. Many of the students had formed a mental 

model of recursion as a form of looping. Other studies (e.g., Bhuiyan, Greer, & 

McCalla, 1991; Kahney 1983) found this same incorrect mental model of 

recursion and other incorrect models as well.

A mental model is a conceptual representation of an abstract concept or a 

physical system that provides predictive and explanatory powers to a person in 

trying to understand the concept or the system and guides their interaction with it 

(Norman, 1983). The system that the person is learning or using is defined as the 

target system. A conceptual model, which is defined by teachers, scientists, or

1
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engineers, provides an appropriate representation of a target system, appropriate 

in the sense of being accurate, consistent, and complete (Norman, 1983). 

Understanding a system can be defined as having an accurate mental model of the 

system. Conceptual models are used as tools for the understanding or teaching of 

a system. It is the responsibility of teachers to develop conceptual models that will 

aid students in developing adequate and appropriate mental models.

Many conceptual models have been used in teaching recursion to novice 

programmers such as the Russian Dolls model, the process tracing model, and the 

mathematical induction model. It is hoped that these models will facilitate the 

learning of recursion by helping students develop an accurate mental model of 

recursion.

In addition to conceptual models, individual differences such as cognitive 

learning styles, cognitive abilities, and previous experiences with a similar system 

play a role in the mental model formation process of learning computer systems 

(Jagodzinski, 1983; Sein & Bostrom, 1989). There is evidence that individual 

cognitive learning styles are related to programming ability in novice 

programmers (Cavaiani, 1989; Merrienboer, 1988,1990). However, the influences 

of cognitive learning styles in students' learning of recursion has not been studied.

This study is designed to investigate how conceptual models and cognitive 

learning styles influence novice programmers in learning recursion.
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1.2 Statement of Problem

The problem with which this study is concerned is as follows: Which of 

two conceptual models (concrete or abstract) will best help novice programmers 

with different cognitive learning styles (concrete or abstract) to learn recursion?

1J  Purposes of the Study

Computer science educators have found that recursion is a very difficult 

concept for students to learn. Part of the reasons may be because there are few 

analogies of recursion in students' everyday lives. Conceptual models are used as 

an analogy to aid students in building mental models of the target system. The 

purpose of this study is to investigate the effectiveness of conceptual models 

designed to help novice programmers gain an initial understanding of recursion. 

An initial understanding means having an accurate mental model of the concept It 

serves as the basis for further learning of higher level skills.

Another purpose of this study is to study the effects of students' learning 

styles on their learning of recursion. It has been shown that individual differences, 

such as learning styles, have an effect on how people perceive and process 

information, but no studies have been done relating learning styles to the learning 

of recursion. The learning styles examined in this study are abstract vs. concrete 

learning styles.

The relationship between learning styles and conceptual models used to 

present information is less clear in the literature. To understand the interactive
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effects between the provided conceptual models and students' learning styles is 

the other purpose of this study.

1.4 Research Questions

The research questions for this study are:

1. Are concrete conceptual models better than abstract conceptual models 

in helping students to learn recursion?

2. Do students with an abstract learning style (i.e., abstract learners) 

outperform students with a concrete learning style (i.e., concrete 

learners) in learning recursion?

3. Do students with an abstract learning style learn recursion better when 

provided with abstract conceptual models?

4. Do students with a concrete learning style learn recursion better when 

provided with concrete conceptual models?

1.5 Rationale

1.5.1 Conceptual Models

Ausubel's (1978) theory of subsumption and Mayer's (1981) theory of 

assimilation provide theoretical explanations for the effectiveness of conceptual 

models. Both theories consider meaningful learning as a process of connecting
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new material to prior knowledge. When no prior knowledge is presented when 

learning a new domain, external assistance must be provided. Ausubel used 

advance organizers as such aids. The corresponding concept in teaching novice 

programmers is a conceptual model. Both theories propose that students can form 

a better mental model through the assistance of a conceptual model.

Gentner (1983) proposed a Structural Mapping Theory (SMT) to explain 

the process by which users make an analogy from a conceptual model to the 

target system. This theory views an analogy as a relational structure that applies to 

one domain (the "base") and can be effectively applied to another domain (the 

"target"). Conceptual models act as a "base" from which inferences can be made 

about the target system. An abstract conceptual model is the one that has an 

abstract base domain such as mathematical models. A concrete conceptual model 

has a more concrete base domain such as concrete objects. According to SMT, 

concrete and abstract models are actually opposite ends of the same continuum. 

They delineate the target system with varying degrees of concreteness. The basic 

difference between these two models lies in the concreteness of the objects in the 

base domain. Gentner believed that different models lead to a predictable 

difference in understanding of the target domain.

In the domain of teaching programming, Mayer (1979) and du Boulay et 

al. (1981) argued for the advantages of explaining the process which takes place 

within the black box (computers). They believed that a concrete conceptual model 

which showed the process of the system at an appropriate level of details would 

improve learning. This is called a glass box approach. However, Kurtz and
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Kemeny (1985) proposed that programming should be taught to novices so that 

they do not have to aware of how the machine functions. Teaching programming 

from the concept of abstraction is a black box approach.

In summary, it can be concluded that a concrete model is a concrete 

analogy of a target system in terms of another system. It shows the internal 

process of the system at an appropriately detailed level. An abstract model is a 

synthetic representation of the underlying conceptual structure of a target system. 

The internal details of the system are hidden through abstraction.

Previous research (e.g., Bayman & Mayer, 1984; Kieras & Bovair; 

Rumelhart & Norman, 1981; Schlager & Ogden, 1986) have shown the 

effectiveness of using conceptual models in teaching/training computer systems. 

Several studies (Borgman, 1983/1984; Halasz, 1985) further concluded that the 

effects were significant especially in creative and complex tasks. However, which 

type of conceptual model (concrete or abstract) is more effective in teaching is 

inconclusive. Bennet (1984) and Sein, Bostrom, and Olfman (1987) found that, 

for simple tasks, subjects trained with concrete models performed better than 

those trained with abstract models, but for complex tasks, the effect was reversed. 

Schlager and Ogden (1986) and Sein (1988) found no significant difference 

between the two types of models.

Not many studies have been done in the field of programming using 

conceptual models. Mayer's series studies (1981, 1982, 1985, 1987, 1988) have 

provided experimental evidence that concrete model promotes learning. However, 

his series research did not explore more complex conceptual knowledge involved
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in large program segments such as the concept of a loop or the concept of a data 

structure. Nor did he compare the effects of different types of conceptual models. 

The present investigation studied the effects of both types of conceptual models in 

a more complex conceptual knowledge domain — recursion.

1.5.2 Cognitive Learning Styles

Researchers in mental models (Norman, 1983,1987; van der Veer & Felt, 

1988) have pointed out that style of information processing (i.e., cognitive 

learning styles) was one of main individual difference features that affected the 

formation and acquisition of mental models. Individual styles of information 

processing not only result in preferences for different modes of presentation of 

learning materials and of analogies, but also lead to individual differences in the 

organization of semantic knowledge.

Kolb's experiential learning (Kolb, 1984) is a theory of cognitive learning 

styles. He believes that it is the combination of how people perceive and how they 

process information that forms the uniqueness of their own learning style, i.e., the 

most comfortable and productive way to learn. More specifically, there are two 

main dimensions of the process by which people learn. The first is the way we 

perceive new information and is presented as a concrete-abstract continuum. In 

new situations, some people prefer to sense and feel their way (Concrete 

Experience) while others prefer to think their way through (Abstract 

Conceptualization). The second dimension, active-reflective continuum, is how 

we process new information. Some people prefer to jump in and try things (Active
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Experimentation) while others prefer to process new information by reflecting on 

it (Reflective Observation).

According to the theory, the extremes of each dimension are mutually 

exclusive. If we try to simultaneously perceive new information, for example, by 

Concrete Experience and by Abstract Conceptualization, a conflict situation will 

arise. To resolve the conflict, each individual must choose how to perceive the 

iiew information and how to process it. Therefore, e; ih individual develops a 

preference, i.e., a learning style, to perceive and process new information.

There appears to be some connection between the conceptual models and 

the concrete-abstract dimension of learning styles. Individuals with an abstract 

learning mode tend to discover the rules and structures inherent in an abstract 

model. These individuals take an analytical conceptual approach to learning. 

Individuals who prefer a concrete learning mode take an experiential-based 

approach to learning. Therefore, the concrete model seems more appropriate. 

There is evidence (Bostrom, Olfman, & Sein, 1987; Sein & Bostrom, 1989) that 

abstract learners benefit more from an abstract model and are hampered by a 

concrete model. Concrete learners, on the other hand, benefit more from a 

concrete model. In addition, both Sein and Bostrom (1989) and Zuboff (1988) 

found that abstract learners performed better than concrete learners on their 

experimental tasks.
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1.5.3 Conceptual Models in Teaching Recursion

Many conceptual models have been used in introducing recursion. Five 

widely used models will be examined below. As for the relative concreteness of 

the models, the first three can be categorized as concrete models and the 

remaining two as abstract models. Other conceptual models can be found in 

Mumane (1991).

Russian Dolls (Bowman & Seagraves, 1985; Dale & Weems, 1991) A 

Russian Doll can be taken apart into many successively smaller dolls of the same 

shape. It displays the process of invoking a smaller size of itself (recursive case) 

and eventually the recursive process stops when the last doll does not contain 

another (base case).

Process Tracing (Dale & Weems, 1991; Koffman, 1992; Kruse, 1982) 

This approach focuses on tracing the process generated by recursive functions, 

that is, how recursive functions work. This model is clearly a concrete model, but 

the degree of concreteness may be varied depending on the method used in tracing 

the process.

Stack Simulation (Dale & Lily, 1991; Greer, 1987; Tenenbaum & 

Augenstein, 1986) Recursion is introduced in terms of computer architectures for 

execution of recursive programs. Calls to functions or procedures are traced with 

explicit reference to the system stack mechanism that is used in the Pascal 

implementation of recursion.
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Mathematical Induction (Aho & Ullman, 1992; Ford, 1984; Henderson 

& Romero, 1989) This approach introduces recursion in terms of the 

mathematical basis for its correctness; that is, proof by induction.

Structure Template (Pirolli, 1985/1986a, 1986b) This model provides 

novice programmers with samples of recursive programs and describes the base 

cases and recursive cases. Solving a recursive problem is similar to filling in the 

slots of base case(s) and recursive case(s) in a structural template.

Pirolli (1985/1986a) found subjects receiving the structure template model 

learned to program their recursive functions in less time than did subjects 

receiving the process tracing model. The performance on the tasks between these 

two groups was not compared. Greer (1987) found no significant difference in 

students' performance with recursive tasks when they were taught with 

architecture-oriented (stack simulation), theory-oriented (mathematical induction), 

and task-performance-oriented (structure template) models. Neither researcher 

investigated the effects of individual differences and its interaction with the 

conceptual models.

1.6 R e s e a rc h  H y p o th ese s

Eight hypotheses are developed in order to answer the research questions. 

Performance on recursive tasks measured by a posttest immediately after the 

treatment and two retention tests after two and six weeks of the treatment, will be 

used to test the hypotheses.
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Since the concrete conceptual models provide a concrete base domain to 

infer recursion, novices tend to gain more understanding of recursion through 

these models. The following two hypotheses will be examined in order to answer 

research question 1.

HI: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the 

posttest measure.

H2: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the 

retention measure.

It is hypothesized that abstract learners rely on logical thinking and 

develop theories to solve problems. They may perform better in learning an 

abstract concept such as recursion. For research question 2, the hypotheses are:

H3: Abstract learners will outperform concrete learners on the posttest

measure.

H4: Abstract learners will outperform concrete learners on the retention

measure.

Students with an abstract learning style may easily adapt ideas when 

provided with abstract conceptual models, whereas students with a concrete 

learning style may learn better when provided with concrete conceptual models. 

The hypotheses for research question 3 are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

12

H5: Abstract learners perform better on the posttest measure when

provided with abstract conceptual models as opposed to concrete 

conceptual models.

H6: Abstract learners perform better on the retention measure when

provided with abstract conceptual models as opposed to concrete 

conceptual models.

And, the hypotheses for research question 4 are:

H7: Concrete learners perform better on the posttest measure when

provided with concrete conceptual models as opposed to abstract 

conceptual models.

H8: Concrete learners perform better on the retention measure when

provided with concrete conceptual models as opposed to abstract 

conceptual models.

1.7 Significance of the Study

Recursion is an important concept in computer science. Most computer 

science students have difficulty in understanding the mechanism of recursion and 

in writing recursive programs. Consequently, they are often frustrated and fail the 

following data structure and algorithm classes, which are fundamental cores of 

computer science and require recursion as a prerequisite.

This study is an attempt to find effective ways to teach recursion and, at 

the same time, consider individual differences such as cognitive learning styles. If
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we can reduce or resolve the difficulty of learning recursion through this study, it 

will be of great help to the field of computer science education.

1.8 Definition of Terms

Recursion is a mechanism for defining something in terms of a simpler 

version of itself (See Appendix A).

Performance in Recursion as considered in this investigation is the 

achievement in two related skills (1) to read and understand recursive programs,

(2) to construct recursive programs, i.e., to generate the base case(s) and recursive 

case(s) for a problem.

A Mental Model is a conceptual representation of an abstract concept or 

physical system that provides predictive and explanatory powers to a person in 

trying to understand the concept or the system and guides their interaction with it. 

It is internal to a person (Norman, 1983).

A Conceptual Model is designed by teachers, scientists, or engineers. It 

provides an appropriate representation of a concept or a system (target system). It 

is external to a person (Norman, 1983). Conceptual models act as a "base" from 

which inferences can be made about the target system.

An Abstract Conceptual Model or Abstract Model is described as 

having an abstract base domain such as mathematical models in inferring a target 

system. The internal details of the target system are hidden through abstraction.
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A Concrete (or Analogical) Conceptual Model or Concrete Model is

described as having a more concrete base domain such as concrete objects in 

inferring the target system. It shows the internal process of the target system at an 

appropriately detailed level.

Cognitive Learning Styles or Learning Styles are the unique ways 

whereby an individual perceives and processes new information and are the means 

by which an individual prefers to learn (Kolb, 1984).

Concrete Learners are individuals with a Concrete Learning Style who 

prefer to sense and feel when learning. They perceive information in concrete 

form and use intuition (Kolb, 1984).

Abstract Learners are individuals with an Abstract Learning Style who 

prefer to think their way through when learning. They use reasoning and 

analytical skills to perceive information (Kolb, 1984).

1.9 delimitations

This study is concerned with how novice programmers learn recursion. 

The subjects under investigation are students who enrolled in the first computer 

science course (CS 304P) at a major southwest research university. Most students 

in the course are novice programmers. Thus, they are the perfect sample for this 

study. The only restriction is that there is just one lecture session scheduled for 

recursion in the course. However, the concept of recursion can still be presented in 

one lecture session without losing its completeness.
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Because of the time factor, the scope of recursion in this study will be 

limited to recursive functions with simple variables. Recursion with structured 

variables and using procedures, which involves more complicated context, will 

not be investigated in this study.

1.10 Overview  of the Dissertation

This study investigates how conceptual models and individual cognitive 

learning styles influence novice programmers when learning recursion. The 

dissertation is organized as follows:

Chapter 1 is an introduction to the study. The chapter addresses the 

background and rationale of the study. The purpose, research questions, and 

hypotheses of the study are also developed and contained in this chapter.

Chapter 2 is a thorough review of related literature and research. The 

theoretical background of conceptual models and cognitive learning styles 

together with the research findings in these two fields are analyzed and described. 

Next, the problems and the conceptual models used in teaching recursion are 

discussed. The chapter concludes with a summary of related research findings.

Chapter 3 describes the methodology of the study. The sample, 

experimental design, procedures, instrumentation, and data analysis are described 

in detail. The reliability and validity of the instrumentation are further investigated 

based on the data collected from the pilot studies and the present investigation.
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The results of two pilot studies prior to the current investigation are reported at the 

end of the chapter.

Chapter 4 presents the findings of the study. Data collected from the 

experiment is analyzed using computer statistical procedures. The results of 

hypotheses testing are presented, followed by a summary of the findings.

Chapter 5 presents a discussion of the results of the study and conclusions 

together with implications and recommendations for future research.
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2.1 Introduction

To understand a system (or a concept) means having accurate mental 

models of the system (or the concept). Conceptual models are designed as aids to 

help students to build accurate mental models of the system. In the consideration 

of building mental models we need to consider four different things: the target 

system to be learned, the conceptual model of the target system, the user's mental 

model of the target system, and the scientist's conceptualization of that mental 

model. Norman (1983) made a clear distinction of these four terms:

(1) Target system. The system that a person is learning or using, e.g., a 

computer system. The target system in this investigation is the recursion concept 

within the context of Pascal programming.

(2) Conceptual models. A conceptual model is invented to provide an 

appropriate representation of the target system, appropriate in the sense of being 

accurate, consistent, and complete. Conceptual models are invented by teachers, 

designers, scientists, or engineers.

(3) Mental models. The concept denotes the knowledge structure a person 

applies in interacting with the target system. These models need not be technically 

accurate (and usually are not), but they must be functional. This model evolves

17
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during interaction with the target system, especially during the initial learning 

phase.

(4) Scientist's conceptualization o f the mental models. This is the idea that 

the psychologist or researcher has about the mental models of a person in 

interacting with the target system. To figure out what models people actually have 

requires one to go to the individuals, to do psychological experimentation and 

observation.

In addition to conceptual models, many researchers (e.g., Jagodzinski, 

1983; Sein & Bostrom, 1989; van der Veer & Felt, 1988) have proposed that 

individual differences, such as prior experience or learning styles, play a role in 

human mental model formation process. The kind of individual differences 

concerned in this investigation is individuals' cognitive learning styles.

This chapter will first review the theoretical background of mental models, 

including their definition and how they are built and used by a person. Next, the 

two factors conceptual models and learning styles which affect the formation of 

mental models, will be described and analyzed. Finally, the target system in this 

investigation, recursion, as well as the conceptual models used to teach it will be 

thoroughly reviewed.
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2.2 Mental Models

2.2.1 Schemata and Mental Models

Researchers have always considered the problem of mental knowledge 

representation as a fundamental issue in understanding complex human behavior. 

In resent years a number of constructs have been developed to deal with the 

mental representation of complex phenomena: frames (Minsky, 1975), scripts 

(Schank & Abelson, 1977), schemata (Rumelhart, 1980), and mental models 

(Johnson-Laird, 1980,1983). Brewer (1987) argued that frames, scripts, and 

schemata are all examples of one general class of knowledge structure and 

referred it as 'schemata'. He concluded that schemata are unconscious mental 

structures that underlie the major aspects of human knowledge and skill. 

Schemata interact with incoming information to modify the generic information in 

the schemata and to produce instantiated schemata of the incoming information.

West, Farmer, and Wolff (1991, p. 7) reviewed related literature and 

defined schemata by including the following ideas: (a) schemata are mental data 

structures; (b) schemata represent our knowledge about objects, situations, events, 

self, sequences of actions, and natural categories; (c) schemata are like plays and 

scripts of plays; and (d) schemata are like theories. In other words, schemata are 

like packets or bundles in which the mind stores knowledge: They are patterns, 

structures, or scaffolds. Schemata are generalized units of knowledge or memory 

representations about a particular domain or concept

A number of researchers have pointed out that schemata are inadequate to 

account for a wide range of phenomena. Human beings are capable of dealing
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with situations that do not involve old generic information. Thus, we can 

understand actions that we have never carried out before. Schemata theory cannot 

explain the situations that do not involve old generic information. In addition, 

schemata are limited to representations of knowledge and seldom explain how 

such representations are used in problem solving and learning environments 

(Borgman, 1983/1984; Sein, 1988). Schemata are mainly a static memory 

representation and cannot be used to run this representation to simulate a problem 

to arrive at a possible solution. The construct of mental models proposed by 

Johnson-Laird (1980, 1983) was introduced to deal with these problems. He 

emphasized that mental models are specific, not generic, representations and 

argued that they give rise to images (1983). The images can be manipulated in 

problem solving or learning situations and provide the dynamic aspects of the 

memory presentation.

Brewer (1987) argued that schemata and mental models do not really 

differ in terms of the specific/generic dimensions nor in the issue of imagery. He 

concluded that they are just two forms of memory representations. Schemata are 

precompiled generic knowledge structures, while mental models are specific 

knowledge structures that are constructed to represent a new situation through the 

use of generic knowledge of space, time, causality and human intendonality. 

Recent developments of Anderson's ACT* theory (Anderson, 1983), which is 

based on schemata theory, account for problem solving aspects of knowledge 

representation.
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Researchers’ views about the differences between schemata and mental 

models are diverse. But, it may be concluded that the theoretical root of mental 

models is schemata theory (Bennett, 1984). Mental models represent the 

progression of schemata from a static representation to a more dynamic one.

2.2.2 Definitions

The term Mental Model is attributed to Johnson-Laird (1980):

A mental model represents a state of affairs and accordingly its 
structure is not arbitrary like that of a prepositional representation, 
but plays a direct representational or analogical role. Its structure 
mirrors the relevant aspects of the corresponding state of affairs in 
the world, (p. 98)

Using this construct, Johnson-Laird has been able to provide an account 

for a wide variety of phenomena, such as comprehension of texts involving spatial 

descriptions and inferences derived from a particular mental model of a specific 

situation. Thus, mental models, like schemata, capture an important characteristic 

of human cognition. In its most generic definition, the term Mental Models can be 

applied to any mental event or, somewhat narrower, to any thought process. In 

this sense, one can have a mental model of one’s own behavior, another person’s 

behavior, or any information process mediated by people or machines (Carroll & 

Olson, 1987).

Many mental models research have been carried out in the modeling of 

physical systems or computer packages. Several descriptions of the term Mental
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Models exist in the literature. Norman (1983) stated that it is the major underlying 

conceptual theme in the area that:

In interacting with the environment, with others, and with the 
artifacts of technology, people form internal mental models of 
themselves and of the things with which they are interacting. These 
models provide predictive and explanatory power for 
understanding the interaction, (p. 7)

Bennett (1984) described a mental model as "... an individual's knowledge 

and/or beliefs about a particular domain which allows effective reasoning within 

that domain" (p. 12). Sein (1988) proposed that "Mental models are the users' 

understanding or knowledge of the system that serves as reasoning aids" (p. 36). 

Kieras and Bovair (1984) defined mental models as "some kind of understanding 

of how the device works in terms of its internal structure and processes" (p. 255). 

All the definitions maintained the representational features and reasoning power 

of mental models.

A more conclusive and explicit definition was provided by Carroll and 

Olson (1987):

The user's mental model of a system is defined as a rich and 
elaborate structure, reflecting the user's understanding of what the 
system contains, how it works, and why it works that way. It can 
be conceived as knowledge about the system sufficient to permit 
the user to mentally try out actions before choosing one to execute.
(p. 12)
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2.2.3 "Running” Mental Models

An important feature of a mental model is that it can be "run" with trial, 

exploratory inputs and observed for its results. This dynamic nature of a mental 

model distinguishes it from being simply a plain memory presentation. This 

"running" feature is based on the imaginal properties of mental models provided 

in the literature. For example, de Kleer and Brown (1981) stated that mental 

models are generated "by running a qualitative simulation in the mind's eye" (p. 

286). Collins (198S) stated that mental models "imply a conceptual representation 

that is qualitative, and that you can run in your mind's eye and see what happens"

(p. 80).

Mental models are used during learning (e.g., using an analogy to begin to 

understand how a system works), in problem solving (e.g., performing a novel 

task), and when the user is attempting to rationalize or explain the system's 

behavior. In other words, such a representation must be capable of simulation; 

users should be able to 'run' this representation to derive a possible solution for the 

problem. Thus, the quality of mental models becomes crucial in the running of the 

models. Accurate mental models will result in effective learning and better 

performance in problem solving; whereas inaccurate mental models may result in 

ineffective learning and poor performance in problem solving.

2.2.4 Building Mental Models

As with other theories in cognitive science, the mental models of human 

beings are not directly observable. No research has been able to 'prove' the
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existence of mental models. Therefore, researchers can only try to infer what 

models users hold by observing users interacting with a system or by users' self- 

reports. Much of the work on the formation and development of mental models 

has begun with the premise that the user possesses a mental model of the system 

and has then explored the characteristics of that mental model. Researchers first 

state the behavioral outcomes that can be attributed to the existence of the 

hypothesized structures of the mental models. Next, in an experimental setting, 

observations can be made to determine whether the predicted behavior occurred. 

Behaviors suggested and examined include, for example, quality of performance 

and learning, nature of errors, and the sketching and drawing of procedures (Sein, 

1988).

Norman provided a fundamental framework for this line of research. He 

(1983) modeled a person's mental model of a particular system by defining four 

concepts. Let the particular target system to be learned be called t. The conceptual 

model of t is C(t). The conceptual model is designed as a tool for understanding 

and teaching the target system. The person's mental model of the system is defined 

as M(t). And the scientists’ conceptualization of a mental model is C(M(t)). While 

the mental model is unobservable, researchers are forced to work within scientists' 

conceptualization of a person's mental model, C(M(t)), and must perform 

experimentation to figure out what models the person actually has. According to 

him, mental models are naturally evolving models and are constrained by things, 

such as previous experience with similar systems and the structure of human 

information processing systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

25

Van der Veer and Felt (1988) pointed out that the development of mental 

models is generally considered to be strongly based on analogies and prior 

knowledge related to the new situation. This process can be activated if the 

teacher refers to existing semantic knowledge and schemata. The analogies stated 

here appear to be the same idea as the conceptual models defined by Norman.

Based on Norman's model, Sein (1988) proposed a framework of the 

mental model formation process in learning a system. Figure 2.1 is the framework.

Target System (t) Trainee's Mental Model M(t)

Mapping 
via analogyInfluences

Trainer
designs

Influences

Trainee Characteristics

The system to be learned 
(Electronic mail filing system)

A set of changing knowledge 
states internal to the trainee

A representation of the system 
external to the trainee

Prior Experiences

Cognitive traits 
visual ability 
learning mode

Motivation traits

Conceptual Model C(t) 
analogical / abstract

Figure 2.1 Mental Model Formation Process (from Sein, 1988)
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The framework explicitly addresses the effects of individual differences in 

the model formation process. It postulates that a novice user can form a mental 

model of the system in the following three ways: (1) Mapping via usage. Users 

can acquire a mental model of the system by using it. (2) Mapping via analogy: 

Users can acquire a mental model of the system by drawing analogies from 

similar systems that are familiar to them. (3) Mapping via training'. Users can 

acquire a mental model of the system through a conceptual model that is provided 

during training. A user can also form a mental model through multiple mappings. 

For novices learning a new system, they can be trained with a conceptual model 

of the system. This initial mental model can expand through using the system, and 

the user's prior relevant experiences (analogy) may interact with both the training 

and usage of the system.

It is obvious that conceptual models and individual differences, such as 

prior relevant experiences and information processing structures, play crucial 

roles in building mental models. The main concern of this investigation is how the 

conceptual models provided by teachers and the information processing structures 

(i.e., learning styles) possessed by students influence the formation of mental 

models. These two factors will be examined later in the next sections.
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2.3 CONCEPTUAL MODELS

The previous section mentioned that people can be aided in building 

mental models of the system they are learning by being taught with a conceptual 

model. This section will describe the rationale of conceptual models as a teaching 

(or training) tool in detail, followed by a review of related research in the Held.

Previous research (Gentner & Gentner, 1983; Kieras & Bovair, 1984; 

Mayer, 1981, 1988) has provided evidence that relevant conceptual models can 

facilitate students' learning and problem solving. These finding suggest that using 

conceptual models in instruction can enable analogical learning and cognition; in 

other words, when students acquire useful conceptual knowledge such as a 

conceptual model they can use this knowledge for learning and thinking about a 

new related domain (Norman, 1983). Rumelhart and Norman (1981) argued for 

the central role of analogical learning in cognitive theories by emphasizing 

accretion, "encoding new information in terms of existing schemata"; tuning, 

"slow modification and refinement of a schemata"; and restructuring, "creating 

new schemata" (pp. 335-336). The constructivists' view in science education has 

also recognized the importance of accommodative learning, corresponding to 

restructuring and tuning, as well as assimilative learning, corresponding to 

accretion (Wittrock, 1985).

Ausubel et al.'s subsumption theory (1978) demonstrated that students 

learn more when the new information being presented is preceded by a 

presentation at a higher order of abstraction which creates a conceptual framework 

into which the more specific information can be organized and anchored. This
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leads to the instructional strategy known as 'advance organizer1. Mayer's 

assimilation theory (1982) clearly demonstrated the effectiveness of using a 

conceptual model as an advance organizer. Both Ausubel and Mayers' theories 

provided the theoretical background of using conceptual models as teaching aids.

2.3.1 Ausubel's Subsumption Theory

Ausubel (1968, 1978) developed a theory of meaningful verbal learning 

called subsumption theory. The main ideas of the theory are concerned with how a 

person's prior knowledge and its organization determine learning. During 

meaningful learning the person organizes, or "subsumes" or incorporates, the new 

knowledge into old knowledge. New information can be better acquired and 

assimilated if it can be tied to knowledge already held in long-term memory. 

Within Ausubel's theory, the meaningful learning will occur if: (1) the learner 

holds previous relevant knowledge, (2) the material is logical, and (3) the learner 

intends to learn the material in a meaningful way. If these conditions are not met, 

students typically memorize in an unmeaningful way, make few attempts to 

incorporate the new material into their schemas, and usually forget quickly what 

they do learn.

The primary practical implication of subsumption theory has become the 

use of the advance organizer. The advance organizer is like a bridge, a linking of 

new information with something already known. The foundation is similarities 

between the old knowledge and the new. Without substantial similarities, the 

advance organizer is impossible. The advance organizer is introduced before a
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lesson or a unit of instruction; that is, before the main body of presentation. It 

provides the students with a structure for the new material. More than an ordinary 

introduction or transition, the advance organizer is based on students' prior 

knowledge.

Some researchers have found that advance organizers do improve learning, 

and some have found that advance organizers do not. For their meta-analysis, 

Luiten, Ames, and Ackerson (1980) examined 135 published and unpublished 

studies relating to the advance organizer. They concluded that there was a small 

but facilitative effect of the advance organizer on learning and memory. Further, 

this effect extended across ages of subjects and subject matter fields. In addition, 

they found that the effect increased with time; that is, when the instruction in the 

experiments extended to several days or weeks as compared to a few hours, the 

retention effects were stronger.

In Mayer's review (1979), he concluded that advance organizers should aid 

learning for difficult-to-assimilate materials, which are unfamiliar, technical, or 

otherwise difficult to relate to the learner's existing knowledge. He also pointed 

out that advance organizers had been most effectively used in mathematics and 

science topics. The target system of this investigation, recursion, meets all of these 

criteria.

The characteristics of a conceptual model are similar to those of an 

advance organizer. A conceptual model of a system is an analogy or a higher level 

abstraction of the system; it captures the essential elements of the system. In other 

words, similarities exist between the conceptual model and the system. The
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conceptual model is always introduced before the main body of presentation to 

give the learner an initial understanding of the system. And, conceptual models 

are generally designed for complex systems that are difficult to relate to prior 

relevant experiences. Therefore, a conceptual model can be considered as an 

effective advance organizer for teaching purposes.

2.3.2 Mayer's Assimilation Theory

Mayer's assimilation theory (1981) provides a framework for the process 

of meaningful learning (or assimilation to schemata). Meaningful learning is 

viewed as the process in which the learner connects new material with knowledge 

that already exists in memory. The process, which is shown in Figure 2.2, occurs 

through the following three steps:

(1) Reception. The learner pays attention to the incoming information so that 

it reaches short-term memory (as indicated by arrow a).

(2) Availability. The learner possesses appropriate prerequisite knowledge in 

long-term memory to use in assimilating the new information (as 

indicated by point b).

(3) Activation. Finally, the learner must use this prerequisite knowledge 

during learning so that the new information may be connected with it (as 

indicated by arrow c).

If any of these steps is not met, meaningful learning can not occur, and the 

learner will be forced to memorize each piece of new information by rote.
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Stimulus Response

Long-Term Memory

Short-Term Memory

Some information processing components of meaningful learning. 
Condition (a) is transfer of new information from outside to short
term memory. Condition (b) is availability of assimilative context 
in long-term memory. Condition (c) is activation and transfer of 
old knowledge from long-term memory to short-term memory.

Figure 2.2 Mayer's Assimilation Theory (from Mayer, 1981)

Mayer pointed out that novices generally have problems in step 2, 

availability, because of they lack domain-specific knowledge. One technique for 

improving their understanding of new information is to provide them with a 

framework that can be used for incorporating new information. This technique is 

aimed at ensuring availability of knowledge in long-term memory. The technique 

proposed by Mayer for providing the appropriate prerequisite knowledge is the 

use of conceptual models. For example, he used a pictorial conceptual model of a 

computer (Figure 2.3) to teach novices a BASIC-like programming language and 

the effect is significant (Mayer, 1981). The conceptual models used by him were
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concrete analogies for the computer system — a scoreboard for memory, output 

pad for the output device, and ticket window for the input device. Mayer (1988) 

concluded that conceptual models presented before instruction tend to enhance the 

performance on transfer tasks which are creative or differ from those provided in 

the training, especially for weaker programmers. The conceptual models appear to 

serve as advance organizers for the new material to be learned.

Memory Scoreboard
A iJ a 4J

A5| a 6\ A7J A8J

Input Program Output
window LIST pad
IN PI

POINTER P2
ARROW •

OUT •

•

Figure 2.3 Mayer's Concrete Model of the Computer for a BASIC-like
Language

In summary, both Ausubel and Mayers' theories propose that external aids, 

such as advance organizers and conceptual models, facilitate incorporation of new 

information into preexisting knowledge. These external aids provide the basis for 

forming an initial mental model of a target system.
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23.3 Concrete and Abstract Conceptual Models

Several researchers (e.g., Bennett, 1984; Carroll & Olson, 1987; Young, 

1983) have described different types of conceptual models used in mental model 

research. For example, Carroll and Olson (1987) conclude that there are four types 

of models called surrogates, metaphors, glass boxes, and network models. The 

kinds of conceptual models investigated in the present investigation were concrete 

and abstract models which were defined based on Gentner's Structure Mapping 

Theory (SMT) (1983) and du Boulay et al.s' Black Box vs. Glass Box approach 

(1981).

Structure Mapping Theory (SMT)

Gentner (1983) proposed the theory to explain the process by which users 

map from a conceptual model to the target system. The central idea of the theory 

is that an analogy is viewed as a relational structure that normally applies in one 

domain (the base) can be applied in another domain (the target). The basic 

assumptions of her theory are: (pp. 156-157)

1. Domains and situations are psychologically viewed as system of 
objects, object-attributes and relations between objects.

2. Knowledge is represented as prepositional networks of nodes 
and predicates. The nodes represent concepts treated as wholes; 
the predicates applied to nodes express propositions about the 
concepts.

3. Predicates are of two types. Attributes are predicates taking one 
argument and relations are predicates taking two or more
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arguments. For example, if x and y are objects, COLLIDE (x, y) 
is a relation, while LARGE (x) is an attribute. First order 
predicates take objects as arguments, while higher-order 
predicates take propositions as arguments.

Gentner (1988) distinguished four kinds of mapping (or analogy) in terms 

of the number of object attributes and relational predicates being mapped from 

base to target:

1. Literal Similarity. Many object attributes and relational predicates are 

mapped from base to target.

2. Analogy. Only (at least mainly) relational predicates are mapped and 

few or no object attributes can be mapped from base to target. The base domain 

are concrete objects whose individual attributes must be left behind in the 

mapping.

3. Relational Abstraction. Abstract relational structures of a base domain 

are mapped. The object nodes of the base domain are generalized physical 

entities, rather than particular concrete objects. Predicates from the abstract base 

domain are mapped into the target domain; there are no nonmapped predicates.

4. Mere-appearance Match. Chiefly object attributes, but no or few 

relational predicates, are mapped from base to target.

Table 2.1 shows these four kinds of mapping and their corresponding 

examples. There are no strict distinction between the kinds of mappings. For 

instance, as shown in Table 2.1, there is no principal difference between analogy 

and relational abstraction. The latter is viewed as the analogy of a higher level.
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Table 2.1 Kinds of Mapping in SMT

Mapping

No. of 
attributes 

mapped to 
target

No. of 
relations 

mapped to 
target

Example

Literal Similarity Many Many The K5 solar system is like our
solar system.

Analogy Few Many The atom is like our solar
system.

Relational Few* Many The atom is a central force
Abstraction system.

Mere-appearance Many Few A sunflower looks like the sun.

* Relational abstraction differs from analogy and the other mappings in
having few object attributes in both the base and target domain.

Relational abstraction is said to possess the most inferential power in the 

learning process. Literal similarities and mere-appearance match are considered 

as much less valuable in this respect, but access to the analogies is much more 

likely with these two kinds of mapping. Analogy is somewhere between literal 

similarities and relational abstraction. It facilitates the implementation of high 

inferential power because mainly relational structures are mapped. In addition, 

object attributes may ease access to analogies (Duit, 1991). Analogy and relational 

abstraction are considered most useful as teaching tools to bridge the prior and 

new knowledge.

According to the theory, analogy and relational abstraction are really 

opposite ends of the same continuum. They depict the target with varying degrees
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of concreteness. In fact, Gentner termed relational abstraction as abstract analogy. 

The basic difference of these two mappings lies in the concreteness of the objects 

in the base domain. For example, in Figure 2.1, the solar system is more concrete 

than the central force system. Thus, the conceptual models corresponding to 

analogy and relational abstraction mappings are termed as concrete models (or 

analogical models in some literature) and abstract models, respectively, according 

to the concreteness of their base domain.

A common example for these two models is given in teaching computer 

file systems. The analogy between a filing cabinet (base) and the computer file 

system (target) is clearly a concrete model. The basic structure and functions of a 

filing cabinet with labeled folders are mapped onto the structure and functions of a 

computer file system. The tree structure diagram (base) used to describe the 

concept of the hierarchical file system and the methods for traversing it (target) is 

considered as an abstract model.

Black Box vs. Glass Box

The idea of using conceptual models for introducing computer concepts 

was also developed by du Boulay et al. (1981). They suggested that too often 

teachers use a black box approach when teaching about computers. In this 

approach students are told not to be concerned about what happens inside the 

computer, but rather to look at each segment or function as a black box which has 

a set of inputs, a process, and a set of outputs. The process need only be presented 

in terms of the inputs and outputs without regard to what actually happens in the
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box. This approach may lead to programs that run, but it will hardly lead to an 

understanding of how a computer works.

Mayer (1979) argued for the advantages of explaining the process which 

takes place within the black box using an idealized set of parts. The parts need 

only be at a level of detail that will allow the processes to be explained. The level 

of detail for appropriate teaching is what he calls "transaction level". This is called 

as glass box approach. Du Boulay et al. (1981) suggested two important 

characteristics of programming languages for novices were needed in the 

approach: (1) Simplicity. It should consist of a small number of parts that interacts 

in ways that can be easily understood, possibly by analogy to other mechanisms 

with which the novice is more familiar. (2) Visibility. Novices should be able to 

imagine the selected parts and processes of the model in action.

A common glass box approach used in most introductory computer 

textbooks is to simulate the action of program statements on a conceptual model 

of the computer system. This approach offers the learner a view of the internal 

operation of the computer and the way the system reacts to programs. The level of 

detail must be sufficient to illustrate the concept to be learned, but should not 

introduce complexity that interferes with understanding the concept. For example, 

in describing the assignment statement, the "mailbox" analogy is often use to infer 

the concept of "computer memory location". The mailbox model is not as detailed 

as that of electronic flip-flops holding charges representing bits in the computer 

memory. Viewed at the electronic level, the concept of assigning a value to a
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variable is too complex. The greater level of detail would add more confusion 

rather than help in understanding the concept.

While revealing appropriate details may improve understanding, obscuring 

detail through abstraction may be equally important. Kurtz and Kemeny (1985) 

proposed that programming should be taught to novices so that they does not have 

to aware of how the machine functions. Teaching programming from the concept 

of abstraction represents a black box approach. Detail is kept from the learner's 

current consideration in order to facilitate learning. Procedural abstraction permits 

the programmer to consider a complete task as a single procedure. Similarly, data 

abstraction permits the programmer to consider data structures as entities, 

independent of machine level representation. It is believed that experts generally 

use abstraction as a means for simplifying the problem solving process.

The glass box approach shows the 'visible' process of the system in a 

simplified conceptual model to the learner. Mayer (1981) termed this kind of 

approach as a concrete model. While the black box approach which hides the 

details through abstraction is obviously an abstract model.

Conclusion

Based on the SMT and Glass Box vs. Black Box approach discussed 

above, it can be concluded that a concrete model is a concrete analogy of a target 

system in terms of another system. It shows the internal process of the system at 

an appropriately detailed level. Examples of concrete models are concrete objects 

(e.g., filing cabinet, and solar system in Table 2.1) or notational machines (termed
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by du Boulay et al., 1981) such as Mayer’s pictorial model of a computer (See 

Figure 2.3). An abstract model is a synthetic representation of the underlying 

conceptual structure of a target system. The internal details of the system are 

hidden through abstraction. Examples of abstract models are abstract objects (e.g., 

tree structure diagram, and central force systems in Table 2.1) and logical or 

mathematical models.

The central theme of a conceptual model is the analogy between the model 

and the target system. Care needs to be taken in the use of analogies. The 

misapplication of an analogy is one of the most common mistakes made by 

novices. The problem arises when a learner tries to extract more structure or 

relationships from an analogy than is warranted (du Boulay, 1986).

Halasz and Moran (1982) suggested that a concrete model (analogical 

model in his term) is effective for communicating complex concepts to novices 

when used as a literary metaphor whose function is simply to illustrate some 

salient points of the target system, but it is dangerous when used as a way of 

reasoning about computer systems. They suggested that reasoning is much better 

done with an abstract model. The basic problem with a concrete model is that it 

attempts to represent a conceptual structure with familiar concepts that are 

inappropriate for reasoning about computer systems. Whereas, an abstract model 

directly presents the underlying conceptual structures of computer systems to the 

user, providing him/her with an appropriate basis to reason about the system.
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However, Mayer views concrete models differently. He showed repeatedly 

the effectiveness of using concrete models. In his conclusion, Mayer (1982) stated 

that:

When appropriate models are used, the learner seems to be able to 
assimilate each new statement to his or her image of the computer 
system. ... If the goal is to produce learners who will be able to 
come up with creative solutions to novel problems, then a concrete 
model early in learning is quite useful, (p. 26)

It seems both of them agree that concrete models are more useful for 

novices learning complex system in the early learning stages. But they have 

different views about how far the concrete models can be carried out in the 

learning process. Mayer believes that concrete models are helpful in the long run 

while Halasz and Moran disagree. They feel that only abstract models are useful 

in the long run. There are no general agreement about which type of conceptual 

model is better than another. The conclusions may vary because of the 

concreteness of the models (models may show different degree of concreteness), 

the timing of using the models, or the characteristics of the target system. Several 

research results in this Held will be reviewed in the next section.

23.4 Related Research

The literature on the study of mental models is rich. Previous research has 

been mostly on the effects of conceptual models in building mental models of 

physical devices and abstract concepts. A comprehensive review is provided in 

Gentner and Stevens' book, Mental Model (1983). The review here will focus on
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research related to the effectiveness of conceptual models in teaching/training 

computer related knowledge.

Mayer’s series of research (1981, 1982, 1985, 1987, 1988) has provided 

experimental evidence that the use of concrete conceptual models promotes 

learning of programming. For example, he (1981, 1982) provided students with a 

diagrammatic model which incorporated a variety of concrete metaphors (e.g., 

input as a ticket window and storage as a file cabinet). Students who were exposed 

to this model before studying a training manual were later able to perform better 

on both programming and recall tasks. He concluded that a concrete conceptual 

model which acts as an advance organizer will help novices come up with creative 

solutions to novel problems, especially for low ability programmers.

Rumelhart and Norman (1981) used a composite of three concrete models: 

a secretary metaphor, which was used to explain that commands can be 

interspersed with text input; a card file metaphor, which was used to describe the 

deletion of a single numbered line from a file; and a tape recorder metaphor, 

which was used to convey the need for explicit terminators in files. The 

performances were good for all the three models. They also found that there were 

several cases in which a subject would employ one of the models when another 

was appropriate. In the same domain, Foss, Rosson, and Smith (1982) provided 

students learning to use a text editor with a concrete conceptual model that used a 

file folder as the metaphor. They found that students who were provided with the 

concrete model learned more in less time.
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Borgman (1983/1984) studied the effect of training novice users of a 

computerized information retrieval system with conceptual models. The 

experimental group was trained with a concrete conceptual model that described 

the retrieval system in terms of a library catalogue while the control group was 

trained procedurally in the mechanics of the system. The model trained group and 

the control group performed equally well on simple, procedural tasks, but the 

model trained group performed better on complex tasks that required 

extrapolation from the basic operations of the system.

Kieras and Bovair (1984) taught two group of students how to operate a 

simple device. One group learned a set of operating procedures for the device by 

rote, and the other learned a concrete conceptual model of the device (a block 

diagram representation) before receiving identical procedure training. The model 

group learned the procedures faster, retained them more accurately, executed them 

faster, and inferred the procedures more easily than did the rote group. They 

concluded that the useful how-it-works knowledge is the knowledge about the 

internal workings of the system that allows the user to infer exactly how to 

operate the device.

Bayman and Mayer (1984) trained calculator users with two different 

types of abstract conceptual models. They found the two model groups adopted 

very similar strategies that lead to accurate solutions of the experimental tasks. 

However, the control group, which had no model training, adopted random 

strategies and, were less accurate than the model trained groups. Halasz (1985) 

had similar findings. He taught students how to use a calculator using either a
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step-by-step action sequence to do standard calculations or instructions which 

included a verbal model of how the internal registers, windows, and stacks 

worked. They found that performance on standard tasks was identical for the two 

groups, but that the group that learned the model performed better on novel tasks.

Galletta (1985/1986) provided a group of novice users with a concrete 

model that described an electronic mail system in terms of a hotel telephone 

system. Their performance in using the mail system was compared against the 

performance of a control group who received procedural instruction. The concrete 

model group did not perform better than the control group.

Schlager and Odgen (1986) incorporated both a concrete model 

(conceptual model in his term) and a abstract model (procedural model in his 

term) in the training materials for teaching students how to form successful 

queries in a database. Three groups of subjects received either a concrete model, 

abstract model, or neither (the control group) in addition to basic instruction. The 

two model groups solved the problems faster than the control group, but did not 

differ from each other.

Bennett(1984) compared the effectiveness of two types of interface design 

for a computerized auditory database system. He found that the concretely trained 

group performed better than the abstractly trained group in simple tasks, but the 

effect was in the reverse for the complex tasks. Sein et al. (1987) had similar 

findings in training novices to use an electronic mail filing system.

Sein (1988) again investigated the effectiveness of two types of conceptual 

models (concrete and abstract models) in training novices using an electronic mail
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filing system. The concrete conceptual model represents the system in terms of an 

office steel filing cabinet, while the abstract conceptual model represents the 

system in terms of a hierarchical diagram. The performance was not significantly 

different between these two model groups. However, they observed significant 

interaction effects between the conceptual models used in training and individual 

differences — learning style and visual ability. The individual difference effects 

were also observed in Sein et al. (1987).

Table 2.2 is the summary of the 12 studies reviewed. The first nine studies 

investigated the effectiveness of using conceptual models in teaching/training. 

Almost all of them supported the idea that the conceptual models were useful and 

better than the methods provided for the control group. Only Galletta's study 

(1985/1986) did not agree. Several of the studies (Mayer, 1981, 1982, etc.; 

Borgman, 1983/1984; Halasz, 1985) further concluded that the effects were 

significant in creative and complex tasks. Assuming the conceptual models were 

helpful, the last four studies in Table 2.2 compared the effects between two 

different types of conceptual models -  concrete and abstract. Their results were 

inconclusive. Bennett (1984) and Sein et al. (1987) found the effects were varied 

and depended on the complexity of the tasks. Schlager and Ogden (1986) and Sein 

(1988) found no significant difference between the two types of models. However 

the interaction effects between the types of conceptual models provided and 

individual differences were found in both Sein et al. (1987) and Sein’s (1988) 

studies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

45

Table 2.2 Related Research in Conceptual Models

Study
Target

Domain
Model Type 

Studied Results

Mayer (1981, 
1982, etc.)

Programming Concrete The model groups performed better 
than the control group, especially in 
creative and novel tasks.

Rumelhart & 
Norman (1981)

Text Editor Concrete The concrete models were useful.

Foss et al. (1982) Text Editor Concrete The model group learned more in 
less time.

Borgman
(1983/1984)

Information
Retrieval

Concrete The model group performed better 
on complex tasks.

Kieras & Bovair 
(1984)

Control
System

Concrete The model group performed better 
than the control group.

Bayman & 
Mayer (1984)

Calculator Abstract The model groups performed more 
accurately than the control group.

Halasz (1985) Calculator Abstract The model group performed better 
on novel tasks.

Galletta
(1985/1986)

Mail System Concrete The model group did not perform 
better than the control group.

Schlager & 
Ogden (1986)

Database
Querying

Concrete/
Abstract

The two model groups perform 
better than the control group. No 
difference was found between the 
two model groups.

Bennett (1984) Auditory
Database

Concrete/
Abstract

The concrete model group 
performed better than the abstract 
model group in simple tasks. The 
effect is reversed in complex tasks.

Sein et al. (1987) Mail Filing 
System

Concrete/
Abstract

Same as above.

Sein (1988) Mail Filing 
System

Concrete/
Abstract

No difference were found between 
the two model groups.
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Of all the studies reviewed, only Mayer's studies investigated the effects of 

conceptual models in programming domain. He repeated showed the effectiveness 

of concrete models in teaching novices programming. However, Mayer's series 

research did not explore more complex conceptual knowledge involved in large 

program segments such as the concept of a loop or the concept of a data structure. 

Neither did he investigate the effects of abstract models. The present investigation 

studied the effects of both types of models and individual differences, which was 

similar to Sein's study, but the target domain was in a more complex conceptual 

knowledge domain — recursive programming. Learning styles, an important 

aspect of individual differences, is reviewed in the next section.

2.4 Cognitive Learning Styles

Individual differences among students present a pervasive and profound 

problem to educators. Students of any age will differ from one another in various 

intellectual and psychomotor abilities and skills, in both general and specialized 

prior knowledge, in interests and motives, and in personal styles of thought and 

work during learning. These differences, in turn, appear directly related to 

differences in the students' learning process. This implies that individual 

differences somehow condition students' readiness to profit from the particular 

instructional environments (e.g., conceptual models) provided. Learning is viewed 

as a process of mental model formation. Therefore, individual differences in
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conjunction with conceptual models should play a important role in the formation 

of mental models.

In his review of present knowledge about individual differences, Snow 

(1986) stated that cognitive learning styles were one of several personal constructs 

that deserve to be further explored. This investigation will explore the effects of 

learning styles in aiding the formation of mental models.

2.4.1 Learning Styles Theory

Learning styles are characteristic cognitive, affective, and 
physiological behaviors that serve as relatively stable indicators of 
how learners perceive, interact with, and respond to the learning 
environment (NASSP, 1979, p. 4)

Learning styles and cognitive styles have often been used synonymously 

in the literature although they are not the same. Learning styles, in fact, is the 

broad term which includes three dimensions: cognitive, affective, and 

physiological styles.

Cognitive styles are information processing habits representing the 

learner's typical mode of perceiving, thinking, problem solving, and remembering 

(Messick, 1976). Each learner has preferred ways of perception, organization, and 

retention that are distinctive and consistent. The difference between cognitive 

styles and general cognitive abilities are as follows: Styles focus on "how I learn" 

and abilities focus on "what I learn"; style is bipolar or on a continuum; abilities 

are unipolar or measured with a single score. Examples of cognitive styles are
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reflection vs. impulsivity and field independence vs. field dependence (analytical 

as opposed to non-analytical way of experiencing the environment).

Affective styles involve personality and emotional characteristics related to 

areas such as persistence, locus of control, responsibility, motivation, and peer 

interaction. Do you prefer working by yourself or with peers? How do you 

respond to verbal or token reinforcement? Examples of affective styles are level 

of anxiety and competition vs. cooperation.

Physiological styles are biologically-based modes of response that are 

founded on sex-related differences and personal nutrition and health. Are you a 

morning, afternoon, or night person? Do you need frequent breaks? Examples of 

physiological styles are time-of-day rhythms and heath-related behavior. (Keefe, 

1987)

Like intelligence or general ability, learning styles come as a result of our 

heredity, experiences, and environment (Kolb, 1984). They are a result of nature 

and nurture (Gregorc, 1984). While learning styles are considered to be consistent 

patterns of behavior and are relatively stable traits over time, they can be modified 

with age and experience. For example, with maturation, learning styles tend to 

move to greater abstraction and tend to become more analytical and reflective. 

Unlike intelligence or general ability, however, styles are value-free (Messiah, 

1976; McCarthy, 1980). No style is better than another. Nor is learning by doing 

necessarily better than learning by listening. These styles are simply different.

However, some styles may be more effective than others in certain 

situations. Thus, when an individual learns, the style may be unique to the task or
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it may duplicate a previous experience. McCarthy (1980) found that individuals 

who preferred learning styles involving listening to lectures are usually 

accommodated in traditional classrooms. Carrier, Williams, and Dalgaard (1988) 

found that learning styles were a prediction of students' confidence and perception 

in their notetaking skills in a college economics course.

The instructional implication for teachers is that the more we know about 

students' learning styles, the more effective and efficient will be the teaching and 

learning process. Reiff (1992) states that there are several reasons for teachers to 

learn about students' learning styles: (1) reducing frustration for students and 

teachers, (2) improving students' self-concept and achievement, (3) helping 

teachers to plan and manage more appropriate lessons, (4) increasing variability 

and flexibility of students' learning styles, and (5) improving communication 

between teachers and students. The relationship between students' learning styles 

and the instruction provided, i.e. (3) and (5), is the main concern of this 

investigation.

The vast majority of research on personality-related learning variables has 

been in the area of cognitive styles (Keefe, 1987). Researchers in mental models 

(Norman, 1983, 1987; van der Veer & Felt, 1988) have pointed out that style of 

information processing (i.e., cognitive styles) and prior knowledge were the two 

main individual difference features that affected the formation and acquisition of 

mental models. Individual styles of information processing not only result in 

preferences for different modes of presentation of learning materials and of 

analogies, but also lead to individual differences in the organization of semantic
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knowledge. This investigation focuses on the cognitive aspect of individuals' 

learning styles.

2.4.2 Kolb's Experiential Learning

In order to measure cognitive learning styles in this investigation, Kolb's 

Leaming-Style Inventory 1985 (LSI-1985) was chosen. LSI-1985 is based on 

Kolb's experiential theory which views learning as a discovery process that 

incorporates the characteristics of problem solving and learning (Kolb, 1984, 

1985). Kolb believes that it is the combination of how people perceive and how 

they process information that forms the uniqueness of their own learning style,

i.e., the most comfortable and productive way for them to learn. More specifically, 

there are two main dimensions of the learning process by which people leam.

Concrete-Abstract dimension — How people perceive new information. In 

new situations, some people prefer to sense and feel their way, while others prefer 

to think their way through. Those who sense and feel tend to rely on CONCRETE 

EXPERIENCE (CE). They perceive information in concrete form and use intuition. 

Others who think their way through focus more on symbolic representation or 

ABSTRACT CONCEPTUALIZATION (AC) of new information. They use reasoning 

and analytical skills to perceive information.

Active-Reflective dimension -  How people process what they perceive. 

Some people, who favor REFLECTIVE OBSERVATION (RO), watch or reflect on 

their experiences while others become active and are doers involved in ACTIVE 

EXPERIMENTATION (AE).
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Kolb views AC and CE as being the opposite ends of a continuum of 

abstract conceptualization of information in learning. In other words, abstract 

conceptualizes (abstract learners) have an opposite learning mode to those who 

favor concrete experience (concrete learners). The same case is with the other 

continuum, i.e., active experimenters and reflective observes. Kolb has defined 

four learning styles (Figure 2.4) corresponding to each combination of preferred 

ways to perceive and to process new information. Four learning styles are defined 

based on a multi-dimensional model. The theory's learning mode dimensions can 

also be categorized under the single learning style continuum model. For example, 

along the AC-CE dimension, an individual can be categorized as either an abstract 

learner or concrete learner. The same case is with the AE-RO dimension.

Concrete Experience 
(CE)

Accommodator Diverger

Active
Experimentation

(AE)

Reflective
Observation

(RO)

Converger Assimilator

(AC)
Abstract Conceptualization

Figure 2.4 Kolb's Four Learning Styles
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Kolb argues that because of the experiential nature of learning, different 

learning situations are necessarily different experiences. An individual may prefer 

one style in one situation and a different style in another. However, even if an 

individual's learning style varies with the situation, it will remain constant within 

a particular context. For example, while learning programming, an individual's 

learning style is likely to remain the same. Moreover, although an abstract learner 

may choose to employ concrete experience in a situation, he or she is more likely 

to be "less concrete" than someone who prefers concrete experiences in the same 

situation. LSI is therefore a relative measure of difference among individuals.

Kolb's theory has been widely applied in many research studies (e.g., 

Atkiston, Murrell, & Winters, 1990; Geiger, 1991; Pinto & Geiger, 1991; 

Reading-Brown & Hayden, 1989) for pedagogical purposes. His Leaming-Style 

Inventory is considered better than other similar instruments in learning styles 

research (Karrer, 1988). The reliability and validity issues of the LSI-1985 will be 

discussed in the Instrumentation section of Chapter 3.

2.4.3 Learning Styles and Conceptual Models

Kolb's theory predicts that students with different learning styles respond 

differently to various teaching methods and that instructional strategies should 

match the learning styles of students. Some students may grasp abstract concepts 

readily while others need concrete imagery to learn. Individuals with different
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learning styles tend to learn differently from different teaching methods 

(Catalanello & Bremenstuhl, 1978; McCarthy, 1980).

There appears to be some connection between the conceptual models 

provided in instruction and the abstract-concrete (AC-CE) dimension of Kolb's 

learning styles. Individuals with an abstract learning style tend to discover the 

rules and structures inherent in an abstract model. These individuals take an 

analytical conceptual approach when learning; they rely heavily on systematic 

planning and develop theories and ideas to solve problems. Thus, an abstract 

model seems more helpful for abstract learners in the learning process.

On the other end of the continuum are individuals who prefer a concrete 

learning style. They take an experiential-based approach when learning and tend 

to rely more on their feeling and experiences than on a systematic approach to 

problems and situations. An abstract model is highly unlikely to be part of their 

relevant experience. Whereas, a concrete model seems very likely to be so. 

Therefore, a concrete model is more appropriate for concrete learners.

There is evidence (Bostrom et al. 1987; Sein & Bostrom, 1989) that 

abstract learners benefit more from an abstract model and are hampered by the 

concrete model. Concrete learners, on the other hand, benefit more from a 

concrete model.

The active-reflective (AE-RO) dimension of Kolb’s learning styles deals 

with active involvement aspects in learning and is less related to any interaction 

with the provided conceptual models. This dimension was not investigated further 

in this study.
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2.4.4 Related Research

Many recent studies attempt to correlate individuals' cognitive learning 

styles with the learning in computer related domains. For example, van der Veer 

and Felt (1988) investigated students' preferred style of representation of 

information (image or abstract representation) in learning an office system. No 

relation between the styles and mental models could be detected because of the 

small sample size (N = 10). However, they concluded that the learning styles as 

measured on the dimension of imager/nonimager seems to be relevant to the 

resulting mental model, especially regarding correctness and completeness.

Davidson, Savenye, and Orr (1992) studied the relationship among 

learning styles (as defined in Gregorc, 1984) and performance measures for 

computer concepts and application skills. Students who prefer the world of 

abstraction and symbols (abstract learners) achieved significantly higher in total 

course points; while those students who experience the world of reality through 

their imagination and feelings (concrete learners) earned significantly lower total 

course points. The major difference was found in programming related activities.

Several studies relate the performance in programming to cognitive 

learning styles. For instance, Corman (1986) surveyed the correlation between 

students’ learning styles (as defined by Kolb, 1985) and their success in an 

introductory COBOL course. He found no significant correlation between 

students' learning styles and their success in the introductory programming course.
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However, Cavaiani (1989) and van Merrienboer (1988, 1990) found 

cognitive learning styles did play a role in students' learning programming. 

Cavaiani (1989) investigated the influence of cognitive styles (field dependence- 

independence, as measured by Group Embedded Figure Test, GEFT) on the 

component programming skill of debugging. The results showed that individuals 

possessing a global cognitive style will be at a disadvantage when involved in the 

cognitive task of program comprehension and debugging. And, the analytic 

problem solvers perform better on diagnostic tasks than global (non-analytic) 

problem solvers.

Van Merrienboer (1988) conducted a study to explore the relationship 

between the cognitive style (reflection-impulsivity, as measured by Matching 

Familiar Figures Test, MFFT) and achievement in an introductory programming 

course. Reflectives were found to be superior to impulsives in their scores on a 

program comprehension test. No significance difference were found in scores on 

factual knowledge of programming language features and syntax. In his other 

research (1990), he found reflectives profit more from an instructional strategy 

that emphasizes the completion of existing programs, and impulsives from the 

generation of new programs.

Sein and Bostrom (1989) examined the influence of learning styles on the 

efficacy of conceptual models in learning a mail filing system. They found that 

abstract learners benefit more from an abstract model but are hampered by the 

concrete model. Concrete learners, on the other hand, benefit more from a 

concrete model. In the Bostrom et al.'s (1987) study, one of their four experiments
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provided the same findings, but three of them did not show any significant 

interaction effect.

In general, both Bostrom et al. (1987) and Sein and Bostrom (1989) found 

that abstract learners performed better than concrete learners on their experimental 

tasks and Zuboff (1988) had similar findings. Zuboff conducted an exhaustive 

study of factory workers adapting to computer-based control system in 

manufacturing machinery. She concluded that successful workers needed to 

develop abstract-thinking skills in order to develop accurate mental models of the 

system and to use their model. That was they needed to think through a process or 

problem rather than just physically acting on it.

Most of the studies reviewed suggests that there are relationships between 

individuals' cognitive learning styles and their performance in learning computing 

systems. The abstract or analytical learners tend to perform better than concrete or 

non-analytic learners in programming tasks. However, the interaction effects 

between students' learning styles and the conceptual models provided are 

inconclusive.

2.5 Teaching Recursion

There are many complex concepts that students encounter when learning 

computer science. Recursion, a powerful and elegant control structure of many 

computer languages, represents one of these fundamental and complex computer 

science concepts (Ford, 1982; Martin, 1985). Understanding recursion is thought
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to be central in a more complete understanding of complex data structures and 

program control (Rohl, 1984). McCracken (1987) argued that recursion is not an 

advanced topic, but rather "recursion is fundamental in computer science, whether 

understood as a mathematical concept, a programming technique, a way of 

expressing an algorithm, or a problem-solving approach" (p. 3). Recursion is also 

regarded as an exciting and powerful concept that can invoke a feeling of playing 

with infinity (Pampert, 1980; Turkle, 1985).

In spite of the importance of recursion, computer science educators have 

found that recursion is a very difficult concept for students to learn and teachers to 

teach (Anderson, Farrell, and Sauers, 1984; Ford, 1982, 1984; Henderson & 

Romero, 1989). It appears that students' response to recursion is often avoidance 

(Kurland & Pea, 1983; Widenbeck, 1989).

2.5.1 Problems in Learning Recursion

Recursion is used as a control structure in computer programs. It provides 

a means for repeating a process, similar to a loop construct. Block-structured 

languages such as Pascal, usually implement recursion by repeating execution of a 

function or procedure. A function or procedure can suspend its own action 

temporally, restart itself possibly with new input data, and when finished resume 

the suspended action and continue to completion. A recursive function or 

procedure is characterized by a call to itself. A detail description of recursion is 

located in Appendix A.
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What makes recursion so difficult to learn? It may be due to three factors: 

lack of everyday analogies, limitation of human's short-term memory (or working 

memory), and complexity involved in recursive algorithms (Er, 1984; Pirolli, 

1986b; Pirolli & Anderson, 1985).

When students learn programming concepts, they already have a lot of 

knowledge about how to perform everyday activities and how to use language. 

The analogies they make from their previous experiences probably help them to 

get some initial understanding of the programming concept (Bonar & Soloway, 

1985). In the case of recursion, the concept is usually completely novel for 

novices and there are very few everyday analogies that exists. Those which are 

frequently used analogies, such as seeing one's own image reflected in a row of 

mirrors, convey the idea of infinity associated with the recursion, but do not 

convey the idea of recursion as a series of processes for solving a problem. Pirolli 

and Anderson (1985) argued that the lack of everyday analogies is what makes 

recursion so difficult to learn.

The problem in learning recursion may be also indirectly related to the 

general difficulty people have with executing recursive mental procedures. For 

example, people find it difficult to understand recursive linguistic structure such 

as The boy is thinking that the girl is thinking of him thinking o f her (Eliot, Lovell, 

Dayton, & McGrady, 1979). It seems that the human mind cannot suspend one 

process, perform a recursive calculation, and return to the original suspended 

process. Such processing requires that partial results be maintained and 

distinguished in memory. It is a well-known psychological fact that the human
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short-term memory has a capacity limited to about seven "chunks" or items. 

Without external aids, the short-term memory simply can not cope with the huge 

amount of information generated by a recursive algorithm (Er, 1984; Pirolli, 

1986b).

Er (1984) argued that it is not because the concept of recursion is difficult 

to grasp, but because recursive algorithms, by definition, are implemented with 

procedures or functions that rely on parameter passing mechanisms such as call- 

by-value or call-by-reference, together with global and local variables, to achieve 

their effects. Therefore, to comprehend recursive algorithms, one needs to 

understand three different aspects of computer programming: recursion, parameter 

passing mechanisms, and global versus local variables, all of which complicate 

the learning of the recursion concept itself.

Previous research has found that students tended spontaneously to develop 

an incorrect mental model of recursion. The most popular misconception was to 

represent recursion as a loop structure that iterates through a problem. Iteration, 

theoretically, a special case of recursion, is often introduced to students prior to 

recursion in an introductory programming course. Kurland and Pea (1983) 

collected think-aloud protocols and hand simulations from students as they tried to 

understand recursive programs in LOGO. Many of the students formed a mental 

model of recursion as a form of looping, rather than seeing it as the suspension of 

the current process and the passing of control to a completely new version of the 

same process. There are different kinds of recursion, and the incorrect mental 

model of recursion as looping may sometimes lead to correct results in some kind
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of recursion (i.e., tail-recursion). Because it did not always lead to incorrect 

results, the fault in the mental models was difficult for students to identify. Other 

researchers (Anzai & Uesato, 1982; Bhuiyan, Greer, & McCalla, 1991; Greer, 

1987; Kahney 1983) found this same incorrect mental model of recursion and 

other incorrect models as well.

However, in general, research comparing the acquisition of recursive and 

iterative procedures has shown that novices are able to handle recursive concepts 

once they have learned iteration, but not vice versa (Anzai & Uesato, 1982; 

Kessler & Anderson, 1986; Wiedenbeck, 1989). Iteration is a common 

phenomenon in our everyday lives. The availability of real world analogies 

facilitates the development of a mental model of control flow in iteration. This 

mental model can serve as the basis for understanding recursion. Recursion, on 

the other hand, is a more complex mechanism and there are no good analogies that 

novices can draw on in formulating a mental model. Kessler and Anderson (1986) 

concluded that the reason for novices' difficulty in understanding flow of control 

in programming lies in their inability to develop adequate mental models of the 

task. Therefore, learning iteration prior to learning recursion is not the main 

argument for the development of incorrect loop mental model.

Thus, how to help novice students to develop an adequate mental model of 

recursion is the critical factor in teaching recursion. In a domain such as recursion, 

which is complex and does not have everyday analogies, using conceptual models 

as advance organizers appears to be an appropriate approach in instruction.
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2.5.2 Models in Teaching Recursion

In teaching recursion, the ability to read and understand recursive 

programs and the ability to write a recursive algorithm to solve a specific a 

problem are generally considered the two basic skills introductory students must 

learn as reflected in the introductory computer science textbooks (e.g., Aho & 

Ullman, 1992; Dale & Lilly, 1991; Dale & Weems, 1991; Koffman, 1992). These 

two skills actually represent two stages of learning recursion: first, knowing what 

recursion is and how it works and then learning how to construct a recursive 

algorithm. Based on these two basic skills, researchers in this field have different 

perspectives of how to teach recursion. Some (Bowman & Seagraves, 1985; Lee 

& Mitchell, 1985; Mumane, 1991) emphasize the importance of knowing the flow 

of control of recursion and make less effort to explain how to derive a recursive 

solution; they prefer a glass box approach (concrete model) to demonstrate how 

recursion works. Some (Ford, 1984; Henderson & Romero, 1989; Pirolli, 

1985/1986a) consider that the implementation details are trivial and it is better to 

explain this computer science concept in more abstract ways. They prefer a black 

box approach (abstract model) in addressing how to design a recursive algorithm.

The following are several conceptual models that are widely used in the 

field. The first three can be categorized as concrete models, and the remaining two 

as abstract models. The categorization is based on the relative concreteness of 

their base domain (as defined in SMT) and the detailed level the internal process 

shown in the models. Other models can be found in Lee and Mitchell (1985) and 

Mumane's (1991) review.
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Russian Dolls. (Bowman & Seagraves, 1985; Dale & Weems, 1991) A 

Russian Doll can be taken apart into many successively smaller dolls of the same 

shape. It displays the process of invoking a smaller size of itself (recursive case) 

and eventually the recursive process stops when the last doll does not contain 

another (base case). This is considered a concrete model of recursion and better 

used as a literary metaphor (Halasz & Moran, 1982), whose function is simply to 

make a point in transferring the ideas of recursion, and not as tools for reasoning. 

Once the point is made the metaphor can be discarded.

Process Tracing. (Dale & Weems, 1991; Helman & Veroff, 1986; 

Koffman, 1992; Kruse, 1982) Process tracing focuses on tracing the process 

generated by recursive functions; that is, modeling the mechanism of recursion 

from the perspective of the scopes of procedures. This model is clearly a concrete 

model, but the degree of concreteness may be varied depending on the method 

used in tracing the process. The block tracing diagram (Appendix F) method 

which traces the flow of control and data among recursive calls by a block 

diagram, is more concrete than the mathematical tracing method. A mathematical 

tracing method, on the other hand, traces the recursive process by mathematical 

equation. It does not explicitly show the process of the recursive mechanism. For 

example, the tracing of the factorial function in calculating F(4) is presented as: 

F(4) = 4 X F(3) = 4 X 3 X F(2) = ........... = 24.

Stack Simulation. (Dale & Lily, 1991; Greer, 1987; Tenenbaum & 

Augenstein, 1986) This approach is the one traditionally used in many textbooks. 

Recursion is introduced in terms of computer architectures for execution of
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recursive programs. Call to functions or procedures are traced with explicit 

reference to the system stack mechanism that is actually used in the Pascal 

implementation of recursion. This model is the concrete representation of the 

system stack, and in some cases is explained to the detailed level of activation 

records and return addresses. Often the concepts of stacks and activation records 

are new to students learning recursion and the local variables, procedure 

invocations, and procedure arguments must be manipulated in constructing the 

system stack. It is argued that this approach may add unnecessary burden to the 

learning of recursion (Ford, 1984; Greer, 1987). This approach, in fact, is a 

process tracing model but with a more concrete base domain.

Mathematical Induction. (Aho & Ullman, 1992; Ford, 1984; Greer, 

1987; Henderson & Romero, 1989) This approach introduces recursion in terms 

of the mathematical basis for its correctness; that is, proof by induction. There are 

many similarities between recursion and mathematical induction. In both 

techniques, a base case(s) must be established first. Then, an assumption 

regarding the correctness of the solution for a particular size of the problem is 

made (inductive hypothesis), and then an extension to the next larger size of the 

problem is made. The base case and inductive hypothesis of mathematical 

induction may be translated directly into the recursive definition for a problem. 

Formulating a recursive algorithm is equivalent to formulating a mathematical 

induction.

One flaw of this approach is that students may or may not be familiar with 

mathematical induction before learning recursion. Ford (1984) suggested that a
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brief introduction of the concept may be necessary before teaching recursion and 

that it would be more appropriate to "argue" the correctness of a recursive 

algorithm rather than to "formal prove" it in the introductory level. This approach 

emphasizes the development of recursion as an instance of mathematical 

induction, seeks to improve relational understanding and consequently transfer of 

knowledge. It ignores the implementation details of recursion and is obviously an 

abstract model.

S tructure Template. (Greer, 1987; Pirolli, 1985/1986a, 1986b) This 

model provides novice programmers with samples of recursive programs and 

describes the recursive algorithm in terms of base case(s) and recursive case(s). 

Pirolli and Anderson pointed out that knowing the underlying structure and 

functionality of recursive programs facilitated the induction skill needed for 

programming recursion more than knowledge of how such functions get executed. 

They concluded that the crucial factor in learning recursion seems to be the 

knowledge that recursive functions can be characterized as having base cases 

(“terminating case” in their term) and recursive cases (“recursive cases and 

recursive relations'" in their term). To solve a recursive problem is similar to 

filling out the slots of base case(s) and recursive case(s) in a structural template. A 

basic recursive template may look like:

IF cbase condition> THEN <base action> (* Base Case *)
ELSE <recursive action> (* Recursive Case *)

However, some researchers (Bhuiyan, Greer, & McCalla, 1989; Greer, 

1987) suspected that students might try to memorize the templates used in
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different situations without a much deeper understanding of recursion. They 

observed that students tend to try to fill template slots on a trial and error basis. 

This approach is considered an abstract model.

2.5.3 Related Research

This section will review mainly experimental research related to teaching 

recursion. There appear to be three major issues that have been investigated: 

mutually influence on learning recursion and iteration, learning recursion from 

examples, and comparing effects of different conceptual models.

Kessler and Anderson (1986) looked at the transfer of skill between 

writing iterative and recursive computer programs. Their experiments involved 32 

novice programmers using SIMPLE, a LISP-like language. They found positive 

transfer from writing iterative functions to writing recursive functions, but not 

vice versa. A subsequent protocol study of students’ problem solving process 

revealed that subjects had a poor mental model of recursion that they developed 

poor learning strategies which hindered their understanding of iteration. Anzai and 

Uesato (1982) found similar results. They hypothesized that learning iteration first 

helps with recursion because iteration provides a model for what a recursive call 

does. However, learning recursion first does not help with iteration because 

iteration is easily mastered, and the recursion construct is not understood well 

enough to serve as the basis for transfer. Wiedenbeck's (1989) study provided 

directional, but not significant (p < .10), support for the above two studies. She
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concluded that the wisely suggestions for educational practice are probably to 

teach iteration before recursion.

Wiedenbeck (1989) also studied the extent to which students trained only 

with recursive examples are able to transfer their knowledge to compute other 

similar recursive mathematical functions in abstract form. It turned out that 

subjects who were subsequently given abstractly stated problems performed 

somewhat worse than they had performed previously when given examples. 

However, they did perform far better than a control group trained only with an 

abstract description of recursion (without examples). Pirolli and Anderson (1985) 

conducted an analysis and simulation model of verbal protocols of three subjects 

learning to program recursive functions. They found that problem solving by 

analogy to work-out examples is frequent in initial attempts by novices to write 

recursive functions. Subjects rely heavily on examples to guide their solutions to 

novel and difficult problems. It seems that providing extensive examples can 

serve as models to facilitate students' learning recursion.

In comparing the effects of conceptual models, Cheer (1987) examined the 

effects of three models: architecture-oriented (stack simulation), theory-oriented 

(mathematical induction), and task-performance-oriented (structure template) 

models to teach college students recursive programming in Pascal. Three groups 

of students were taught recursion by means of video-taped lectures developed for 

each of the three models. No significant difference in achievement in recursion 

was found among the three groups. Students identified as having higher general 

computer science ability did demonstrate higher achievement in recursion,
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regardless of the conceptual models provided in instruction. Pirolli (1985/1986a) 

found subjects receiving the structure template model learned to program their 

recursive functions in less time than did subjects receiving the process tracing 

model. The performance (achievement) on the tasks between these two groups 

were not compared.

2.5.4 Implications for Instruction

From the previous discussion, the implications for teaching recursion can 

be summarized as follows:

1. Students' difficulty in learning recursion is mainly due to their inability to 

develop adequate mental models of the tasks. The provided conceptual 

models in instruction may play a crucial role here.

2. It is necessary to teach students the two basic skills: knowledge of how 

recursion works and knowledge of how to construct recursive algorithms. 

This implies that both glass box and black box approaches are important 

in teaching recursion.

3. Learning iteration first may help students when learning recursion, but not 

vice versa. (In fact, iteration is generally introduced before recursion in 

teaching a block-structure language such as Pascal.)

4. Providing extensive examples will facilitate novice students' learning 

recursion.

These implications serves as guidelines in developing the instructional 

framework for teaching recursion in the present investigation. According to the
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framework, the two sets of instruction materials (abstract and concrete) were 

designed, and their relative concreteness-abstractness were emphasized. The 

details of the instructional materials will be addressed in the following chapter.

2.6 Summary

Norman (1983) stated that "As teachers, it is our duty to develop 

conceptual models that will aid the learner to develop adequate and appropriate 

mental models" (p. 14). A conceptual model of a system serves as an advance 

organizer by providing novices with a basic knowledge structure that can be used 

to build an initial mental model. Previous research has shown the effectiveness of 

conceptual models in teaching computing systems. Furthermore, in general, the 

conceptual models are most effective for domains that are novel or complex. 

Conceptual models can be categorized into two types of models — abstract and 

concrete, according to the relative concreteness of their base domain and the detail 

level of internal process shown in the models. Literature does not provide 

conclusive findings for which type of conceptual model is better than the other.

Mayer is one of the few researchers who has studied the effects of 

conceptual models in computer programming domain. He repeatedly 

demonstrated the effectiveness of concrete models in teaching programming. 

However, Mayer’s series research did not explore more complex conceptual 

knowledge such as the concept of data structures or the concept of flow of control
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(e.g., recursion or iteration). Neither did he investigate the effects of abstract 

models.

Researchers in mental models have pointed out that individuals' cognitive 

learning styles is one of the main individual difference features that affected the 

formation and acquisition of mental models. According to Kolb's learning styles 

theory, abstract learners take an analytical approach in learning and rely on 

systematic planning and logical thinking to solve problems; concrete learners take 

an experiential-based approach in learning and tend to rely more on their feeling 

and experiences in solving problems. Previous works have shown that abstract 

learners are likely to perform better than concrete learners. Bostrom et al. (1987) 

and Sein and Bostrom (1989) proposed that abstract learners may benefit more 

from an abstract model and concrete learners may benefit more from a concrete 

model. However, their studies did not provide decisive findings.

The reason for novices' difficulty in understanding recursion in 

programming is their inability to develop adequate mental models. This is because 

recursion is novel for novice programmers and recursive algorithms involve 

several different aspects of programming knowledge, which complicate the 

learning. Conceptual models appear to be appropriate tools for instruction in this 

kind of domain. Many conceptual models have been used in teaching recursion, 

but little research has been conducted to investigate their effectiveness. The major 

findings from the research literature are that prior learning of iteration and giving 

extensive examples may facilitate novice students' learning recursion.
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3.1 introduction

Recursion is a fundamental concept in computer science. Most computer 

science students have difficulty in learning recursion when the concept is first 

introduced. Conceptual models have been used in teaching recursion to help 

students understand this abstract concept. Researchers have discovered that 

students' learning styles may affect their learning and that there may be 

connections between the conceptual models provided and individuals' learning 

styles. The purpose of this study is to understand how conceptual models and 

learning styles influence novice programmers in learning recursion.

To fulfill the purpose of this study, an experimental research design was 

planned and implemented with a freshman computer science class at a major 

southwest research university. The following sections describe the entire research 

method.

3.2 Research Hypotheses

The research hypotheses tested in this experimental research study were:

70
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HI: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the 

posttest measure.

H2: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the 

retention measure.

H3: Abstract learners will outperform concrete learners on the posttest

measure.

H4: Abstract learners will outperform concrete learners on the retention

measure.

H5: Abstract learners perform better on the posttest measure when

provided with abstract conceptual models as opposed to concrete 

conceptual models.

H6: Abstract learners perform better on the retention measure when

provided with abstract conceptual models as opposed to concrete 

conceptual models.

H7: Concrete learners perform better on the posttest measure when

provided with concrete conceptual models as opposed to abstract 

conceptual models.

H8: Concrete learners perform better on the retention measure when

provided with concrete conceptual models as opposed to abstract 

conceptual models.
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3.3 Sample

The subjects for this study were students who enrolled in CS 304P at the 

major southwest research university in the Fall of 1992. CS 304P, Computer 

Science I, is the first required course for students who plan to major in computer 

science. It is also recommended for nonmajors who plan to take a second 

computer science course. The prerequisite for CS 304P is a score of at least 460 

on the College Board Achievement Test in Mathematics at Level I, or three 

semester hours of mathematics with a grade of at least C. The major objective of 

this course is to introduce basic computer science concepts through programming 

with Pascal. Students enrolled in this course are considered novice programmers 

and have very little prior knowledge of computers in general or recursion in 

particular. This course requires students to attend a one-hour lecture section in 

addition to a two-hour discussion section each week. This course is a partially 

self-paced course, once students get two weeks ahead in the class they no longer 

have to attend the discussion sections. The lecture is taught by a course instructor, 

and the discussions are led by Teaching Assistants (TA). There were a total of 12 

discussion sections led by six TAs at the semester while this investigation was 

conducted.

The two experimental groups in this study were the abstract model group 

in which abstract conceptual models were used in teaching recursion, and the 

concrete model group in which concrete conceptual models were used. Students 

were assigned to the two groups by having each TA lead a section of both groups.
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Each group, of approximately equal size, consisted of six discussion sections and 

were led by the same TAs. This avoided the possible variance caused by the TA 

factor.

The learning style of each student was identified through his/her results on 

the scrambled Kolb's Learning Style Inventory 1985 (LSI-1985, see section 3.6 

Instrumentation). One major concern of the sampling process was that the 

distribution of students' learning styles might be unbalanced. Because the learning 

style of a student was determined by the norm provided in the LSI-1985 manual, it 

was possible to have 90% abstract learners and only 10% concrete learners. This 

would result in an inadequate number of subjects for the concrete learners' group. 

To try to ensure that enough subjects would be in both learning styles groups, a 

pilot test of students' learning styles was conducted on CS 304P students in the 

Spring of 1992. It was found that the distributions of abstract learners and 

concrete learners were about 60% and 40% respectively. Traditionally, more than 

200 students enroll in CS 304P. This suggested that there would be enough 

subjects in each learning styles group for statistical analysis.

3.4 Experimental Design

The design of this experimental study is a pretest-posttest, 2 X 2  

(conceptual models X learning styles) factorial design. The effects due to the 

conceptual models, learning styles, and the interaction of both in regards to 

recursion performance can be easily examined through this design.
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Subjects were randomly assigned to either the abstract model group or the 

concrete model group based on which discussion section they attended. The 

treatment in the study was the different conceptual models used to present 

recursion to these two model groups. Within each model group, subjects were 

identified as either an abstract learner or a concrete learner based on their scores 

on the scrambled LSI-1985. Hence four treatment groups were formed: abstract 

learners with abstract models, abstract learners with concrete models, concrete 

learners with abstract models, and concrete learners with concrete models. To 

compare students' performance in the different groups, a posttest and two 

retention tests were conducted after the experimental treatment. There is evidence 

that students' prior knowledge in computer programming may affect their learning 

a new programming concept. Therefore a pretest was used to equate the variance 

caused by students' prior knowledge in conducting the statistical analysis.

The independent variables for this research were: (1) the conceptual 

models provided in teaching recursion, and (2) the student's learning style. The 

first independent variable consisted of two levels: abstract conceptual models and 

concrete conceptual models. The difference between the two models was that the 

abstract model emphasized the mathematical concept of recursion while the 

concrete model featured a more concrete demonstration of recursion. The second 

independent variable also had two levels: abstract learning styles and concrete 

learning styles. Students with an abstract learning style prefer logical thinking and 

develop theories to solve problems. Students with a concrete learning style rely on 

feeling and may learn better when provided with concrete examples.
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The dependent variables in this study were the subjects' performance in 

recursive tasks on both the posttest and the retention tests. The posttest was 

intended to measure how much the subjects had learned about recursion right after 

the treatment. The retention tests, on the other hand, investigated the knowledge 

retained a period of time after the treatment was given. Two retention tests, one 

two weeks and the other six weeks after the treatment, were administered to the 

subjects.

3.5 EXPERIMENTAL TREATMENTS AND PROCEDURES

At the beginning of the Fall semester of 1992, the investigator met with 

the CS 304P instructor to arrange the appropriate time and procedures for the 

experiment. It was decided that the best way to do the experiment was to integrate 

the experimental procedures with the regular discussion section. This reduced 

students' extra work for participating in the study and resulted in more students in 

the experiment. Furthermore, to encourage students to participate, ten bonus 

points (out of 1000 points for the course) were given to students who completed 

the necessary procedures: signed a consent form, filled out the scrambled LSI- 

1985, attended the lecture on recursion, and completed the posttest.

The treatment in this study was the use of different conceptual models to 

teach recursion. A lecture based on the concrete conceptual model was presented 

to one group (concrete model group); and a lecture based on the abstract
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conceptual model was given to the other group (abstract model group). (See 

Instructional Materials of the Instrumentation section for both materials.)

One discussion section of 50 minutes duration was scheduled at the middle 

of the semester for the topic of recursion. The section was selected as the time for 

the treatment and the posttest. Iteration (which may facilitate the learning of 

recursion) and functions (which is a prerequisite for learning recursive functions) 

were taught at least a week before this discussion section. The course consisted of 

three major exams: review exam I, review exam II, and the final exam. Review 

exam I was held about two weeks before the lecture on recursion and was used as 

the pretest for the study. Review exam II and the final exam were scheduled two 

weeks and six weeks after the lecture on recursion, respectively; the retention tests 

were administered as part of both exams. Figure 3.1 shows the procedures for the 

experiment.

Two weeks before the treatment, the investigator attended the weekly TA 

meeting of the course and gave a brief introduction of the study and scheduled the 

time that recursion would be taught in each TA’s discussion sections. The TAs 

were asked to explain the study to students, to collect the signed consent forms 

(Appendix B), and to administer the LSI instrument in their discussion sections 

the following week (Phase 1). Students who signed the consent form gave the 

investigator permission to access their exam scores in the course.

During the treatment week, the investigator visited all 12 discussion 

sections to present the lectures on recursion (Phase 2). During this time the TAs 

were not required to be in the classroom for the presentation. Six sections were
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given lectures using the abstract conceptual model and six sections were given 

lectures using the concrete model. The lecture (treatment) took about 35 minutes, 

and was followed by a 15 minute posttest. Students who were not participating in 

the study were also strongly encouraged to come to the presentation because 

recursion is a part of the course content and would be included in their review and 

final exams.

Phase 0 Pretest (two weeks before the treatment)
a. Subjects take the pretest, (review exam I of the course)
b. The investigator meets with the TAs and schedules the experiment.

Phase 1 Consent Form and LSI (a week before the treatment)
a. Subjects sign a consent form.
b. Subjects fill out a LSI. (10 minutes)
c. Subjects are assigned to two model groups.

Phase 2 Treatment and Posttest (treatment week)
a. The investigator lectures to each group. (35 minutes)
b. Subjects take the posttest. (15 minutes)

Phase 3 Retention Test 1 (two weeks after the treatment)
a. Subjects take the first retention test.

(embedded in review exam II of the course)

Phase 4 Retention Test 2 (six weeks after the treatment)
a. Subjects take the second retention test.

(embedded in final exam of the course)

Figure 3.1 Experimental Procedures
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The first retention test (Phase 3) was embedded in review exam II. In order 

to avoid the possible variance from the TAs' comments on recursion, the TAs 

were asked not to discuss recursion in their discussion sections or during office 

hours before review exam n. If students had any questions regarding recursion, 

the TAs were to direct them to the investigator. The investigator held office hours 

between the period of the treatment and review exam II. The investigator 

answered students' questions using the appropriate treatment model. The second 

retention test (Phase 4) was embedded in the final exam. After review exam n, the 

TAs were free to discuss recursion with their students.

3.6 Instrumentation

Three kinds of instrument were used in this investigation: (1) a scrambled 

Kolb's Leaming-Style Inventory 1985 (LSI-1985), (2) two sets of instructional 

materials, and (3) a pretest and three recursion achievement tests. Each of these 

will be described in greater detail below.

3.6.1 Leaming-Style Inventory 1985 (LSI-1985)

The revised Kolb's LSI-1985 is an improved version of the original 

Leaming-Style inventory developed by David A. Kolb in 1976. Like its 

predecessor, the LSI-1985 is designed to help individuals assess their ability to 

learn from experience. It measures an individual's relative emphasis on four
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learning orientations — Concrete Experience (CE), Reflective Observation (RO), 

Abstract Conceptualization (AC), and Active Experience (AE) — and computes 

two combination scores that indicate the extent to which the individual prefers 

abstractness over concreteness (AC-CE) and to which he/she emphasizes action 

over reflection (AE-RO). This study is interested in the abstract-concrete 

dimension of an individual's learning style. Therefore the AC-CE scale is the 

measure used in the study.

The LSI-1985 consists of 12 sentence-completion items in which 

respondents attempt to describe their learning styles. Respondents are required to 

rank-order (from 1 to 4) their preferences on four sentence endings that 

correspond to the four learning orientations described in Kolb's theory. It takes 

about ten minutes to complete the inventory. The resulting raw scores for the four 

basic scales, CE, RO, AC, and AE range from 12 to 48, and range from +36 to -36 

for the two combination scales AC-CE (AC minus CE) and AE-RO (AE minus 

RO). To determine an individual's learning orientation along the abstract-concrete 

dimension, a norm is provided in the manual. If the AC-CE score is greater than 

or equal to four, the individual is classified as an abstract learner; otherwise the 

individual is classified as a concrete learner (Smith & Kolb, 1986, P. 101). The 

determination of the active-reflective dimension (AE-RO) uses a similar method.

Reliability

The internal consistency reliability for the four basic scales and two 

combination scores, as reported in the manual, range from .73 to .88, as measured
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by Cronbach's Standardized Scale Alpha (Smith & Kolb, 1986). Table 3.1 shows 

the internal consistency of the LSI reported in the literature and a pilot study 

conducted by the investigator. The mean coefficient alphas of the LSI-1985 for 

the four scales which range from .80 to .83 are considered high. The reliability of 

the two combination scales are not reported in the table because combined scales 

violate the assumption of independence for a coefficient alpha.

Table 3.1 Internal Consistency for the LSI

Study N CE RO AC AE

LSI-1985
Smith & Kolb (1986) 268 .82 .73 .83 .78
Sims et al. (1989) 317 .82 .84 .84 .86
Ruble & Stout (1990) 312 .85 .80 .83 .81
Pinto & Geiger (1991)* 55 .78 .81 .84 .86
Ruble & Stout (1991) 229 .82 .79 .81 .82

Mean .81 .80 .83 .83
Scrambled LSI-1985 
Ruble & Stout (1990) 323 .72 .72 .75 .73
Ruble & Stout (1991) 403 .67 .78 .78 .78
Veres etal. (1991)* 711/1042 .62 .67 .73 .55
Wu** 440 .77 .75 .81 .72

Mean .70 .73 .77 .70
* The coefficient alphas are the mean of two measures. 
** See 3.9.1 Pilot Study 1.

Stability is another important property for a reliable measure. Smith and 

Kolb (1986) provide no test-retest reliability data for the LSI-1985 in the manual
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nor in subsequent articles. Table 3.2 gives the test-retest correlations for the LSI in 

several studies done by others. The test-retest reliability for LSI-1985 are 

moderate for all scales, except for the CE attribute.

Table 3.2 Test-retest Correlations for the LSI

Study Interval N CE RO AC AE AC-CE AE-RO

LSI-1985
Atkinson (1988) 9 days 26 .57 .40 .54 .59 .69 .24
Atkinson (1989) 30 days 107 .49 .72 .67 .63 .59 .71
Pinto & Geiger(1991)* ly r 55 .25 .53 .59 .66 - -

Ruble & Stout (1991) 5 wks 139 .18 .36 .46 .47 .22 .54
Mean .37 .50 .57 .59 .50 .51

Scrambled LSI-1985
Ruble & Stout (1991) 5 wks 253 .37 .61 .59 .58 .48 .60
Veres etal. (1991)* 8 wks 711 .96 .97 .97 .96 - -

Mean .67 .79 .78 .77 .48 .60
- The correlation of the scale was not reported.
* The coefficients are the mean of six measures.

While the internal consistency of the LSI-1985 is high, the stability of the 

inventory seems slightly low. This may be because of the response-set bias caused 

by the format of the instrument. The sentence endings corresponding with the four 

scales are presented in the same order for each of the 12 items of the inventory. 

Thus, a tendency to respond in the same fashion across items will give a high 

internal consistency, but may sacrifice the stability. A scrambled version of the
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inventory was suggested by Ruble and Stout(1990, 1991) and Veres, Sims, and 

Locklear (1991) to further improve the stability of the inventory. The four 

sentence endings within each item were randomly scrambled but the order of the 

12 items within the LSI-1985 were not changed. As they predicted, the internal 

consistency of the scales was slightly decreased but the test-retest stability was 

improved. Table 3.2 and 3.3 show the reliability results of both versions of the 

LSI.

The scrambled LSI-1983 seems more reliable than the original LSI-1985 

in that it takes out the response-set bias in the inventory. The mean coefficients for 

both internal consistency and test-retest reliability of the scrambled LSI-1985 are 

acceptable. The LSI used in the present investigation is a scrambled version of the 

LSI-1985. The original LSI-1985 has all the sentence endings corresponding to 

CE in the first column, RO in the second column, AC in the third column, and AE 

in the last column. The scrambled version of the LSI-1985 used in this 

investigation is located in Appendix C; and the scrambled item format for the 

version is in Appendix D.

Validity

Numerous researchers (Ferrel, 1983; Katz, 1986; Marshall & Merritt, 

1985; Wilson, 1986) have examined and found support for Kolb's two bipolar 

dimensions: Abstract Conceptualization versus Concrete Experience (AC-CE) and 

Active Experimentation versus Reflective Observation (AE-RO). Most of the 

factor analytic research was done on the original LSI. Not much research has been
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done on the LSI-1983, and the findings regarding the validity of the LSI-1985 are 

not conclusive. Cornwell, Manffedo, and Dunlap (1991) and Ruble and Stout 

(1990) performed factor analysis on the LSI-1985 and the scrambled LSI-1985 

and found the inventory failed to support the bipolar dimensions proposed in 

Kolb's theory. However, Katz (1986) and a pilot test (See section 3.9) conducted 

by the investigator do support the bipolar dimensions in Kolb’s theory.

Unfortunately, there is no perfect LSI at the time of this investigation. 

After careful comparisons and study, Kolb's LSI seems a reasonable choice over 

other learning style inventories. Karrer (1988) examined five existing LSIs and 

concluded that all LSIs had weaknesses but Kolb's LSI was considered better than 

others. In addition, the reliability and validity of the scrambled LSI-1985 were 

verified in the pilot study conducted by this investigator. Therefore, the scrambled 

LSI-1985 was selected as the instrument for measuring students' learning styles in 

this investigation.

3.6.2 Instructional Materials

Two sets of instructional materials for teaching recursion were developed 

based on the concrete and abstract conceptual models respectively. The major 

difference between these two sets of instructional materials are in the introduction 

section of the lecture and the verification step of each given example. For the 

concrete model group, Russian Dolls serves as a literal metaphor in introducing 

recursion, and block diagram tracing is used to verify recursive functions (See 

Concrete Instructional Material below). For the abstract model group, recursion is
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introduced in terms of a recursive mathematical definition and verified by 

mathematical induction (See Abstract Instructional Material below).

The rationale and development of the two sets of instructional materials 

are described below.

Instructional Strategy

The instructional objectives of teaching recursion can be characterized by 

the following skills (Dale & Lilly, 1991; Dale & Weems, 1991; Greer, 1987). 

They are:

(1) to be able to read and understand recursive programs.

(2) to be able to write a recursive algorithm to solve a specific problem.

(3) to be able to evaluate when a recursive solution is appropriate for a 

given problem.

Objective (1) deals with what is recursion and how does recursion work. 

After knowing the definition and mechanism of recursion, objective (2) deals with 

how to design a recursive solution for a specific problem. Due to the limitation 

addressed in Chapter 1, the scope of recursive problems for this study is limited to 

recursive functions with simple variables. Problems involving recursive 

procedures or structured variables, which use the same concept but consist of 

more complicated language features, are not covered in this investigation. 

Objective (3), which seems too difficult for a novice programmer, is excluded in 

this investigation.
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The strategy for teaching recursion is designed to achieve the first two 

objectives. To assure that the two sets of instructional materials have a parallel 

structure, a framework for teaching recursion is developed first. The implications 

for teaching recursion addressed in section 2.5.4. provide guidelines to design the 

framework. Next, the corresponding conceptual models for both sets of materials 

are put into the appropriate places to stress their relative concreteness- 

abstractness. The framework for teaching recursion, which is summarized in 

Figure 3.2, consists of the following six stages.

1. Introduction -- What is recursion?

2. Recursion in Pascal — How does recursion work?

3. Designing recursive algorithms — How to design a recursive solution?

(a) Understand the problem

(b) Determine the size of the problem

(c) Identify the base case(s) of the problem

(d) Identify the recursive case(s) of the problem

4. Verification — Verify the implemented algorithm

5. Examples — Apply the knowledge learned above to solve problems

6. Elaboration and Conclusion -  Extend the concept to solve more

complicate problems

Figure 3.2 A Framework for Teaching Recursion
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1. Introduction — What is recursion? The definition of recursion is 

introduced. The base case(s) and recursive case(s) of a recursive algorithm are 

also defined in this stage. Different conceptual models may be given in the two 

sets of instructional materials. The introduction is a critical part in the teaching of 

a new concept. It not only bridges the new concept with prior knowledge (or 

experience) but also provides a firm background for learning the concept.

2. Recursion in Pascal -- How does recursion work? This stage transfers 

the abstract concept of recursion introduced above to application level, i.e., how 

recursion works in a Pascal program and how it really solves a problem. A 

recursive program is presented to students to explain the definition of recursion 

within the context of a programming language. The base case and recursive case 

of the program are identified and how recursion works is demonstrated by tracing 

the execution of a recursive function call. Different conceptual models can be 

used in tracing recursion for the two sets of materials.

3. Designing recursive algorithms -  How to design a recursive solution? 

This is one of the major goals for teaching recursion. Dale and Lilly (1991; pp. 

474-475) provides a sound approach for designing a recursive solution:

(a) Get an exact definition of the problem to be solved.

(b) Determine the size of the problem to be solved. The size of the problem 

will decrease after each recursive call.

(c) Identify the base case(s) in which the problem can be expressed 

nonrecursively.
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(d) Identify the recursive case(s) in which the problem is solved in terms 

of a smaller version of the same problem — a recursive call.

4. Verification — Verify the implemented algorithm by tracing the program 

(concrete model) or mathematical induction (abstract model).

5. Examples -  Apply the knowledge learned from the above to solve 

similar problems. This provides students an opportunity to summarize what they 

have learned in stages 1 through 4 and apply them to new problems. The software 

development method for solving programming problems (Koffman, 1992; pp. 13- 

14) is integrated here to solve each example problem:

(a) Problem Specification. Gain a clear understanding of what is required 

for the solution.

(b) Analysis and Design. Identify problem inputs, desired outputs, and any 

constraints for the problem. Design a recursive algorithm as stated in 

stage 3.

(c) Implementation. Implement the algorithm as a program, with Pascal.

(d) Testing and Verification. Test the completed program and verify that it 

work as expected using the verification method stated in stage 4.

6. Elaboration and Conclusion -  Extend the application of recursion to 

problems which require the use of Pascal procedures or structured variables, or 

which may have many base cases and/or recursive cases. The emphasis here is to 

tell students that there are other kinds of recursive problems, but the concept they 

just learned can be applied to all the problems. Because of time constraint, no 

example is given in this stage.
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Three recursion problems: computing the Factorial of a number, Summing 

the total from 1 to N, and calculating the Power of a number, are presented in both 

sets of instructional materials. The Factorial problem is used in stages 2, 3, and 4, 

to address the concept of recursion and how to design and verify the recursive 

algorithm. The Summing and Power problems are discussed in stage 5 to give 

students an overview of the entire problem solving process. The difference 

between the two sets of instructional materials lies in the conceptual models 

applied in the presentations. The next two sections describe the two sets of 

instructional materials developed using the framework.

Concrete Instructional Material

The concrete instructional material set uses concrete conceptual models to 

present recursion. Stacked Russian Dolls, along with a block tracing diagram 

counting the dolls, is demonstrated in stage 1 to introduce the concept of 

recursion. The block tracing diagram physically mimics the attribute of Russian 

Dolls, where many successively smaller rectangles are drawn inside a large 

rectangle. The block tracing diagram is again used in stage 2 to show how 

recursion works and in stages 4 and 5 to trace the recursive algorithms developed. 

In identifying the recursive case(s) of a problem, "Find the relationship between 

the problem and a smaller version(s) of itself’ is used as a hint to remind the 

students in the presentation.
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The details of the materials are given in Appendix E and examples of the 

block tracing diagram are found in Appendix F. Fourteen transparencies (See 

Appendix G) were developed for presenting this approach.

Abstract Instructional Material

The abstract instructional material set employs abstract conceptual models 

in presenting recursion. Recursion is introduced using the recursive definition of a 

mathematical function. Then in stage 2, the mathematical equation operation (e.g., 

F(4) = 4 X F(3) = ...) is presented to show how recursion works. When verifying 

recursive algorithms, mathematical induction is applied to argue (but not formally 

prove) the correctness of the algorithm. Mathematical induction is briefly 

introduced in stage 4 by stating that the base/recursive case in recursion is similar 

to the base/inductive case in mathematical induction. The concept of mathematical 

induction is always used in determining the recursive case(s) of a problem: 

"Assume a smaller version o f the problem is true, then find the relationship 

between the original problem and the smaller version of itself."

The material is found in Appendix H. Thirteen transparencies (See 

Appendix I) were developed for this approach.

Validating the Instructional Materials

Several revisions were done to improve the structure as well as the relative 

concreteness-abstractness of the materials.
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The drafts of the materials were first reviewed by a local computer science 

education seminar whose members are computer science educators in the 

university. Then, the investigator lectured using both sets of materials and 

videotaped the presentations. A computer science instructor who has been 

teaching Pascal for years reviewed the tapes and gave opinions regarding the 

presentation, the transparencies used, and the materials presented. The results of 

this revision were used in the pilot study conducted in the summer of 1992. After 

the pilot study, the investigator decided to take out one example (computing the 

Nth Fibonacci number) from stage 5 because of the time constraint.

Two weeks prior to the treatment, the investigator presented the materials 

to the local computer science education seminar group. The last revisions were 

made and the final versions of both sets of materials were then produced.

3.6.3 Pretest and Recursion Achievement Tests 

Pretest

The Pretest (See Appendix J) used in the investigation is a review test (i.e., 

review exam I) for CS 304P developed by the course instructor. The test consists 

of 35 multiple choice questions. It tests students' computer knowledge such as 

Boolean logic, assignment, If-Then-Else, and While loop. The results of this 

pretest were used as the covariate in the statistical analysis which would equate 

the variance caused by the students' prior knowledge. The internal consistency 

reliability of the pretest is .65, which is reasonably high for a non-standardized 

achievement test.
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Three recursion achievement tests, a posttest and two retention tests, were 

developed for use in the investigation. The tests were designed to evaluate 

whether students achieved the course instructional goals relating to recursion. 

These goals are (1) to read and understand a recursive program and (2) to design a 

recursive solution for a specific problem. Therefore, two types of questions, 

predicting the results of a recursive program and generating the recursive 

definition (the base and recursive cases) of a problem, were included in the tests. 

Within each type of questions, two kinds of questions were given, one kind was 

similar to the examples given in the instruction (treatment) and the other kind was 

substantially different from the examples given in the instruction.

It is desirable to have open-ended questions rather than multiple choice 

questions in the tests to be used. Open-ended questions offer few or no clues for 

the answer and provide a wide variety or answers for analyzing students' 

conceptions, but they require more effort in grading. Multiple choice questions, on 

the other hand, are easier to grade but provide students with more opportunities to 

guess and may result in lower test reliability. The posttest, which was conducted 

by the investigator, was an open-ended format while the retention tests were 

multiple choice questions. This was because the retention tests were embedded in 

the CS 304P exams and needed to have the same format as the regular exams.

The questions in the recursion achievement tests were selected and revised 

from pilot tests conducted before this investigation. These pilot tests included: a 

quiz at the beginning of the follow-on course, and a pretest and three recursion 

achievement tests used in the pilot study administered through the summer of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

92

1992. The item difficulty, appropriateness, and possible ambiguity of the 

questions were analyzed and used as a reference in designing the final 

achievement tests in this investigation.

Item difficulty is most relevant to achievement or aptitude tests and is 

usually defined statistically as the percentage of persons who respond correctly to 

an item. The higher the item difficulty value, the easier the item is considered to 

be, and vice versa. In general, it is better to have items with a range of item 

difficulties (e.g., ranging from .10 to .90) and with an average level of item 

difficulty around .50 (Walsh & Betz, 1985, pp. 69-72). This provides a wide 

distribution of the test scores and results in better discrimination among students' 

performance.

All the recursion achievement tests developed in this investigation were 

reviewed by the members in the local computer science education seminar group 

before they were given to the students. The content validity of the tests were 

satisfied through this process. The test scores collected in this investigation will be 

analyzed in order to determine the reliability and item difficulty data for each test. 

The three recursion achievement tests are described below.

Posttest

A copy of the posttest is located in Appendix K. This test consists of four 

questions. The ability to read and understand recursive programs is measured by 

question 1 and 3, which ask students to predict the results of recursive 

function/procedure calls. The ability to generate recursive algorithms for a
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problem is assessed through question 2 and 4, which require students to fill in the 

base case(s) and recursive case(s) for the problems. Question 1 and 2 are similar 

to examples given in the instruction; question 3 and 4 differ substantially from the 

examples. Question 1 is like the Summing problem presented in the instruction 

while question 2 has the same pattern as the Power problem. Question 3 deals 

with a recursive procedure and question 4 has two base cases as well as two 

recursive calls in the recursive case. Both types of questions were not discussed in 

the instruction because of the time limitation of the presentation.

The total score for the posttest is 16 points. Each question is worth four 

points, and thus two points for each blank slot except in question 2. In question 2, 

two points are given to the base case and the remaining two points are for the 

recursive case. Students were asked to show their work during the test. Partial 

credit was awarded if students did not get the correct answer but showed their 

understanding in their working out process. Partial credit was also given to 

semantically correct but syntactically wrong answers in questions 2 and 4.

The reliability for the posttest is .80 (N = 332), as measured by Cronbach's 

coefficient alpha. The data analyzed are the posttest scores collected in the study. 

The item difficulty for each question is given in Table 3.3. The difficulties range 

from .16 to .74 with an average difficulty .50. The test is considered to be a very 

reliable instrument based on the results described above.
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Table 3.3 Item Difficulty for the Three Recursion Tests

Test Ql 02 Q3 Q4 Q5 Mean

Posttest* .727.59 .74/.58 .50/.32 .35/. 16 .50

Retention 1 .61 .74 .41 .78 .48 .60

Retention 2 .65 .77 .90 .57 .15 .61
* Every question has two subquestions.

Retention Test 1

Retention test 1 (See Appendix L) is a part of review exam II of CS 304P. 

This test contains five multiple choice questions. Questions 1 and 3 test predicting 

the result of a program and Questions 2, 4, and 5 test generating the recursive 

definition of a problem. Questions 1,2, and 4 are similar to the examples given in 

the instruction while questions 3 and 5 are more elaborate questions. The total 

score is five points, one point for each question.

The reliability for the test is .53 (N = 453), as measured by Cronbach’s 

Alpha. The low alpha value may be due in part to a poor reliability or to some 

other factors (e.g., test length or heterogeneous questions). Test length has an 

effect on the alpha value. In general, the more items there are on the test, the 

higher the alpha value for the test. The item difficulties for this test (Table 3.4) 

shows good distribution and a reasonable mean difficulty value. A further analysis 

of the test found the item discrimination for the five questions ranged from .28 to 

.48, which is greater than .20. This shows that the questions are well-designed. It
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can be concluded that the test is a reliable measure even though the alpha value is 

not very high.

Retention Test 2

Retention test 2 is embedded in the final exam of CS 304P. A copy of the 

test is located in Appendix M. This test consists of five multiple choice questions. 

Questions 1 and 2 test predicting the result of a program and Questions 3 - 5  test 

generating the recursive definition for a problem. Questions 1,3, and 4 are similar 

to the examples given in the instruction while questions 2 and 5 are more 

complicated questions. The total score is five points, one point for each question. 

The reliability for the test is .62 (N = 400) which is satisfactory.

3.7 Data Collection

Scores on the scrambled LSI-1985, the pretest score, and three recursion 

achievement scores (i.e., the posttest, retention test 1, and retention test 2) were 

collected for each student in the experiment. The scrambled LSI-1985 test scores 

were collected by the TAs a week before the treatment. The pretest scores were 

provided by the instructor of CS 304P after review exam I. The posttest scores 

were gathered by the investigator immediately after the treatment. The two 

retention scores were extracted from the recursion questions in review exam II 

and the final exam in CS 304P. Students were asked to fill in their names and 

student ID numbers on all the tests in order to match their data in the experiment.
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3.8 Data  Analysis

Subjects who had studied recursion before the treatment were precluded 

from the data analysis of the investigation. The information was collected by 

asking subjects the following question: "Have you studied recursion before?" at 

the beginning part of the posttest.

A two-way Analysis of Covariance (ANCOVA) was performed on all data 

in order to test all the hypotheses. If F was significant at .05 level, then Scheffe's 

test was conducted to test the significance of the difference between the groups. In 

any investigation that involves learning, prior experience could influence how 

well subjects perform on a task. Hence, students' prior knowledge in programming 

(measured by the pretest) was the covariate in the analysis of performance. A 

Homogeneous Slopes test was run to test if the covariate satisfied the assumption 

of ANCOVA prior to the ANCOVA analyses.

The Cronbach's Standardized Scale Alpha was employed to further 

analyze the internal consistency reliability of the instruments used in the 

investigation. The statistical package SAS 5.18 in an IBM mainframe computer 

was used to perform all the data analysis.
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3.9 Pilot Study Results

Two pilot studies were conducted prior to the present investigation. Pilot 

study 1 verifies the scrambled LSI used in the study. Pilot study 2 is similar to the 

current investigation but with a small sample. The instruments and research 

procedures were improved through the results of the pilot studies.

3.9.1 Pilot Study 1

The purpose of pilot study 1 was to determine the reliability and construct 

validity of the scrambled LSI-1985. Another objective of this pilot study was to 

investigate the distribution of students' learning styles in order to ensure that there 

would be enough subjects in the different learning styles groups for the present 

investigation. The scrambled LSI-1985 was administered to N = 440 

undergraduate students at a major southwest research university during the spring 

of 1992. The subjects were enrolled in the following classes: Computer Science I 

(CS 304P), Computer Science II (CS 315), and Programming Languages (CS 

345). The first two are lower division computer science classes while the last one 

is an upper division class.

The distribution of students' learning styles by class is shown in Table 3.4. 

Overall, 35% of the subjects were concrete learners and 65% were abstract 

learners. The percentage of the abstract learners increased as the level of the class 

progressed. This supported Kolb's claim that individual’s learning styles may be 

oriented to a certain direction which relates to their learning or working 

environment. The distribution of CS 304P students were 41% concrete learners

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

98

and 59% abstract learners. This suggested that there would be enough subjects 

available in both learning style groups for the purpose of this investigation.

Table 3.4 Distribution of Learning Styles by Class for Pilot Study 1

Learning Styles CS 304P CS 315 CS 345 Total

Concrete Learner 

Abstract Learner

97 (41%) 

142 (59%)

44 (30%) 

105 (70%)

14 (27%) 

38 (73%)

155 (35%) 

285(65%)

Total 239 149 52 440(100%)

Table 3.5 Distribution of Learning Styles by Sex for Pilot Study 1

Learning Styles Female Male Total

Concrete Learner 46 (40%) 102 (34%) 148

Abstract Learner 70 (60%) 201 (66%) 271

Total 116(28%) 303 (72%) 419 (100%)

* Twenty-one students did not fill out their sex identity.

Table 3.5 shows the distribution of students' learning styles by sex. The 

percentage of both learning styles in male and female students are about the same, 

which indicates that sex is not a factor in students' learning styles. Pinto and 

Geiger (1991) and Allinson and Hayes (1990) also found no significant
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differences due to sex on the learning style scales. Therefore, the sex factor was 

not considered in the present investigation.

The results of subjects' scores on the scrambled LSI-1985 were analyzed to 

examine the reliability and validity of the inventory. The reliability for the four 

basic scales all showed good internal consistency, which were .77 (CE), .75 (RO), 

.81 (AC), and .72 (AE), as measured by Cronbach's Standardized Scale Alpha (N 

= 440). According to Wiersma and Jurs (1990, p. 196), if an instrument consists of 

a number of subscales, the scores on the subscales can be factor analyzed to 

determine if they follow some hypothesized pattern. If they do, this would support 

the construct validity of the instrument with respect to the hypothesized pattern. A 

SAS program was employed to perform a principal factor analysis on the four 

scales. A two-factor solution, with varimax rotation was run to verify the 

construct validity of Kolb's two bipolar dimensions.

Table 3.6 Factor Loading for the Scrambled LSI (N = 440)

LSI Dimensions Factor 1 Factor 2

CE -.83 -.05

RO -.03 .86

AC .89 -.01

AE -.06 -.81

Variance .371 .347
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The results of factor analysis is given in Table 3.6. The two bipolar 

dimensions are very clearly shown in the table. The Concrete Experience (CE) 

dimension is loaded negatively on the first factor, while the Abstract 

Conceptualization (AC) dimension loaded positively. As for the second factor, the 

Reflective Observation (RO) dimension is loaded positively whereas the Active 

Experimentation (AE) dimension loaded negatively. The two factors together 

accounted for 71.8% of the variance for the scrambled LSI-1985, which is 

reasonably high. The two factors were about equally important in explaining the 

variance, as the first factor accounts for 37.1%, and the second factor 34.7%. 

These results provided support for the scrambled LSI-1985 as a measure of the 

two bipolar dimensions proposed by Kolb's experimental learning theory.

3.9.2 Pilot Study 2

Pilot study 2 allowed the investigator to strengthen the present 

investigation in terms of the sampling process, experimental procedures, as well 

as the instruments. In particular, it enhanced the parallel structure of the two sets 

of materials and time control of the presentation (treatment) in the current 

investigation.

The pilot study was conducted during the summer of 1992. The subjects 

were students who enrolled in CS 304P at a major southwest research university. 

A total of 121 students enrolled in the course and 45 of them volunteered to attend 

and complete the experiment. There were four discussion sections led by two 

TAs. Each conceptual model group was compound of two discussion sections
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which were led by different TAs. The discussion section was 75 minutes long and 

scheduled twice a week. The time for the treatment was set at the discussion 

section that held one week after students were taught function construct.

A week prior to the treatment, students were asked to fill out the 

scrambled LSI-1985 and to sign the consent form. A pretest was given right 

before the treatment (10 minutes). The treatment was the presentation of recursion 

given by the investigator to each discussion section (approximate 40 minutes). A 

posttest which had been pilot tested at the beginning of the summer was 

administered immediately after the treatment (25 minutes). Two retention tests 

were embedded as a portion of the review exam II and the final exam of the 

course. The investigator held office hours for recursion questions before both 

exams. The TAs were asked not to discuss recursion with their students.

Results

The distribution of the subjects in each group is summarized in Table 3.7.

Table 3.7 Subjects Distribution of Pilot Study 2

Abstract Model 
Group

Concrete Model 
Group Total

Concrete Learners 8 5 13 ( 29%)

Abstract Learners 15 17 32 ( 71%)

Total 23 22 45 (100%)
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There were 13 concrete learners, and only five of them in the concrete 

model group. The inadequate number of concrete learners in both model groups 

results in reduced statistical power in data analysis and thus any conclusion drawn 

from the results should be very cautiously.

The reliability of the achievement tests, as measured by Cronbach's Alpha, 

were: .67 (n = 85) for the pretest, .89 (n = 89) for the posttest, and .51 (n = 121) 

and .43 (n = 113 ) for the two retention tests. The reliability of the two retention 

tests did not seem high enough. This might be because both tests were short. The 

test length has an effect on the reliability alpha value. The posttest consisted of 

five programs and a total of 15 questions while the two retention tests consisted of 

five and three questions, respectively. Since the retention tests were embedded in 

the exams of the course, the number of recursion questions was restricted. Further 

item analysis might be necessary to evaluate the reliability of the two tests. The 

data for the two retention tests were not analyzed due to their undecided 

reliability.

The SAS ANCOVA procedure was employed to analyze the posttest data 

in pilot study 2. Table 3.8 presents cell data, and Table 3.9 presents the summary 

results of the ANCOVA run on the posttest scores with the pretest scores serving 

as the covariate. There were no main effects. No significant difference was found 

between different types of conceptual models, F(l,40) = 0.81, p  = .37; and 

between different types of learning styles, F(l,40) = 2.81, p  = .10, on the posttest 

measure. Nor were the interaction effects between conceptual models and learning
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styles detected, F(l,40) = 3.30, p  = .08. Even though no statistical differences 

were found, some directional patterns can still be seen from the results. The 

subjects in the concrete model group (adjusted Mean = 13.3) seemed to perform 

better than the abstract model group (adjusted Mean = 11.6) while the abstract 

learners (adjusted Mean = 14.2) outperformed the concrete learners (adjusted 

Mean = 10.7). As for the interaction effects, the abstract learners seemed to 

benefit more from the abstract models (adjusted Mean = 15.1); whereas the 

concrete learners were hindered by the abstract models (adjusted Mean = 8.1).

Table 3.8 Descriptive Statistics on the Posttest Measure for Pilot Study 2

Group N Mean SD
Abstract Learner, Abstract Model 15 15.2 4.5
Abstract Learner, Concrete Model 17 13.3 5.0
Concrete Learner, Abstract Model 8 7.9 5.4
Concrete Learner, Concrete Model 5 13.2 4.2

Table 3.9 ANCOVA Results on the Posttest Measure for Pilot Study 2

Source SS df MS F P

Conceptual Models 26.79 1 26.79 0.81 .37

Learning Styles 92.92 1 92.92 2.81 .10

Interaction 109.27 1 109.27 3.30 .08

Error 1322.80 40 33.07

p< .05
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Conclusion

Many flaws were found in this pilot study upon careful review and study. 

These flaws might be responsible for the inconclusive findings. Appropriate 

procedures were implemented to avoid similar flaws in the present investigation. 

The following are the discussion of the flaws and how it was improved.

Sample Size. The sample size in the pilot study was too small, thus the 

results were less conclusive because of low statistical power. The 45 subjects 

accounted for only 37% of the students enrolled in the course in the summer of 

1992. The subject recruiting procedures used in the current investigation were 

enhanced by asking the course instructor and the TAs to advocate the learning 

outcome of attending the experiment as well as giving additional credits for 

participating. The number of subjects were increased to 237, which accounted for 

52% of the total enrolled students, because of the improved sampling procedures 

and the larger enrollment in the regular semester.

Presentation. The investigator presented recursion to the four discussion 

sections. It was found that the time spent in each section were not quite the same 

and even the materials presented to the same model group were not very 

consistent. To gain better control of the time and the materials presented, more 

transparencies were developed in order to cover more details of the presentation. 

All the lectures/presentations in the present investigation followed the materials 

shown in the transparencies.
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Achievement Tests. The slightly low reliability alpha values of the two 

retention tests might be due to the fact that both tests were short. Further item 

analysis would be necessary in order to guarantee the quality of the questions. 

Test questions in the present investigation were adapted and/or revised from the 

tests in pilot study 2 with the consideration of their item difficulties and item 

discrimination.

No statistically significant effects were found in the ANCOVA analysis of 

the conceptual models and the learning styles in pilot study 2. But, the directional 

patterns for the two factors found in the pilot study were similar to several 

previous research findings. A careful research design as in the current 

investigation, which avoids the flaws in pilot study 2, is necessary to assure a 

more conclusive finding.

3.10  SUMMARY

This chapter provided an overview of the research design of this 

investigation, including the sample selection, the experimental treatment and 

procedures, the development of the instruments, and the summary of two pilot 

study results. The results of the investigation will be presented in the next chapter.
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Chapter 4 Research Findings

This investigation examined the effects of conceptual models and 

cognitive learning styles in novices learning recursion. This chapter contains an 

overview of statistical procedures, the results of data analyses, and a summary of 

the findings.

4.1 Overview  of Analysis Procedures

Of the 453 students registered for an introductory computer science course 

(CS 304P) at a major southwest research university at the Fall of 1992, 280 

(61.8%) students completed the pretest, signed the consent form, filled out the 

scrambled LSI-1985, and took the posttest. Students in one of the 12 discussion 

sections (ten students) were taught recursion before the treatment by their TA. 

Thirty-three students indicated they had studied recursion before. These two 

groups of students were excluded from the final data analysis. Therefore, N = 237 

(52% of the enrolled students) was the sample size for this investigation. Table 4.1 

reveals the distribution of subjects in each group. The number of subjects 

decreased slightly for retention analysis because a few students did not take the 

retention tests and a few dropped the course; N is 216 for retention test 1 and is 

209 for retention test 2.

106
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Table 4.1 Distribution of Subjects

Abstract Model 
Group

Concrete Model 
Group Total

Concrete Learners 37 39 76 (32%)

Abstract Learners 75 86 161 (68%)

Total 112 125 237 (100%)

A two-way Analysis of Covariance (ANCOVA) was performed in order to 

test all the hypotheses. If F was significant at .05 level (p < .05), then Scheffe's 

test was conducted to test the significance of the difference between the groups. 

Students' prior knowledge in programming (as measured by the pretest) was the 

covariate in the ANCOVA analyses. A Homogeneous Slopes test was run to test if 

the covariate satisfied the assumption of ANCOVA prior to the ANCOVA 

analyses. The statistical package SAS 5.18 on an IBM mainframe computer was 

used to perform all the analysis.

4.2  RESULTS OF DATA ANALYSIS

The results of the posttest and the two retention tests are analyzed in the 

following sections in order to test all the hypotheses.
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4.2.1 Analysis of the Posttest

The posttest measured subjects' understanding of recursion after the 

treatment. It was designed to test Hypotheses 1,3,5, and 7. A Homogeneity Slope 

test was conducted prior to doing the ANCOVA calculation. The homogeneity 

test was not significant (p = .57), which means it was safe to proceed with the 

ANCOVA analysis. The descriptive statistics for the ANCOVA analysis are in 

Table 4.2. Table 4.3 presents a summary result of the ANCOVA analysis on the 

posttest measure.

Table 4.2 Descriptive Statistics on the Posttest Measure

Group N (237)
Pretest

Mean SD
Posttest

Mean SD

Conceotual Models
Concrete Model 125 26.5 3.5 7.9 3.9
Abstract Model 112 26.4 3.3 6.8 4.1

Learning Styles
Concrete Learners 76 25.9 3.3 6.2 3.7
Abstract Learners 161 26.7 3.4 7.9 4.0

Leamine Stvles x
Conceptual Models

Abstract x Abstract 75 26.5 3.5 7.2 4.1
Abstract x Concrete 86 26.9 3.4 8.5 3.9
Concrete x Abstract 37 26.3 2.9 5.8 3.8
Concrete x Concrete 39 25.5 3.7 6.7 3.7
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Table 4.3 ANCOVA Results on the Posttest Measure

Source SS df MS F P

Conceptual Models 67.57 1 67.57 5.09 .03

Learning Styles 82.94 1 82.94 6.24 .01

Interaction 0.28 1 0.28 0.02 .89

Error 3082.81 232 13.29

p<  .05

The results of hypotheses testing are as follows:

HI: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the 

posttest measure.

The conceptual models main effect was significant, F(1,232) = 5.09, p = 

.03. The concrete model group (adjusted Mean = 7.7) performed better than the 

abstract model group (adjusted Mean = 6.5) on the posttest measure. The results 

supported this hypothesis. Therefore, students instructed in recursion with 

concrete models outperformed those instructed with abstract models on the 

posttest measure, regardless of their learning styles.

H3: Abstract learners will outperform concrete learners on the posttest

measure.
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The learning styles main effect was also significant, F(1,232) = 6.24, p  = 

.01. Abstract learners (adjusted Mean = 7.8) outperformed concrete learners 

(adjusted Mean = 6.5) in posttest performance, regardless of the conceptual 

models provided in instruction. The final results support the hypothesis.

H5: Abstract learners perform better on the posttest measure when

provided with abstract conceptual models as opposed to concrete 

conceptual models.

H7: Concrete learners perform better on the posttest measure when

provided with concrete conceptual models as opposed to abstract 

conceptual models.

Hypotheses 5 and 7 test the interaction effects between conceptual models 

and learning styles on the posttest measure. There was no interaction effect 

detected, F(1,232) = 0.02, p  = .89. Therefore, these two hypotheses were not 

supported. Abstract learners did not benefit more from abstract models, and 

concrete learners did not benefit more from concrete models as measured in the 

posttest.

4.2.2 Analysis of the Retention Tests

The two retention tests were used to compare the effects of conceptual 

models and learning styles after a period of two and six weeks of the treatment. 

The retention tests were designed to test Hypotheses 2, 4, 6, and 8. A 

Homogeneity Slope test was conducted prior to doing the ANCOVA calculation
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on both retention measures. The homogeneity test was not significant for either 

retention test 1 (p = .56) and test 2 (p = .21). The descriptive statistics and the 

summary ANCOVA results on both retention measures are summarized in Table 

4.4,4.5,4.6, and 4.7.

Table 4.4 Descriptive Statistics on Retention Test 1 Measure

Group N (216)
Pretest

Mean SD
Posttest

Mean SD

Conceptual Models
Concrete Model 119 26.6 3.5 3.0 1.3
Abstract Model 97 26.4 3.4 2.7 1.3

Learning Styles
Concrete Learners 71 25.8 3.4 2.5 1.3
Abstract Learners 145 26.8 3.5 3.0 1.3

Learning Styles x 
Conceptual Models 

Abstract x Abstract 65 26.5 3.6 2.9 1.2
Abstract x Concrete 80 27.1 3.4 3.2 1.3
Concrete x Abstract 32 26.3 3.0 2.5 1.4
Concrete x Concrete 39 25.5 3.7 2.5 1.2
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Table 4.5 ANCOVA Results on Retention Test 1 Measure

Source SS df MS F P

Conceptual Models 1.32 1 1.32 0.89 .35

Learning Styles 7.88 1 7.88 5.34 .02

Interaction 0.27 1 0.27 0.18 .67

Error 311.55 211 1.48

p  < .05

Table 4.6 Descriptive Statistics on Retention Test 2 Measure

Ersiest Posttest
Group N (209) Mean SD Mean SD

Conceptual Models
Concrete Model 111 26.5 3.6 3.6 1.3
Abstract Model 98 26.3 3.4 3.5 1.4

Learning Stvles
Concrete Learners 69 25.9 3.4 3.3 1.4
Abstract Learners 140 26.6 3.5 3.7 1.3

Learning Stvles x
Conceptual Models

Abstract x Abstract 65 26.3 3.6 3.7 1.3
Abstract x Concrete 75 27.0 3.4 3.7 1.3
Concrete x Abstract 36 26.4 3.0 3.1 1.6
Concrete x Concrete 36 25.3 3.8 3.4 1.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

113

Table 4.7 ANCOVA Results on Retention Test 2 Measure

Source SS df MS F P

Conceptual Models 1.98 1 1.98 1.22 21

Learning Styles 5.21 1 5.21 3.21 .05

Interaction 2.68 1 2.68 1.65 .20

Error 331.28 204 1.62

p < .05

The results of hypotheses testing are as follows:

H2: Students instructed in recursion with concrete conceptual models will

outperform those instructed with abstract conceptual models on the 

retention measure.

There was no conceptual models main effect found on either retention 

measure, F(l,211) = 0.89, p  = .35 for retention test 1; and F(l,204) = 1.22, p  = .27 

for retention test 2. The concrete model group (adjusted Mean = 3.0 and 3.7) 

performed marginally better than did the abstract model group (adjusted Mean = 

2.7 and 3.5) on both measures. This hypothesis was weakly supported; however, 

the difference was not significant at the .05 level.

H4: Abstract learners will outperform concrete learners on the retention

measure.

The learning styles main effect was significant on both retention measures, 

F(l,211) = 5.34, p = .02 for retention test 1; and F(l,204) = 3.21, p  = .05 for
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retention test 2. Abstract learners (adjusted Mean = 3.0 and 3.7) outperformed 

concrete learners (adjusted Mean = 2.5 and 3.3) on both retention tests, regardless 

of the conceptual models provided in instruction. The hypothesis was supported.

H6: Abstract learners perform better on the retention measure when

provided with abstract conceptual models as opposed to concrete 

conceptual models.

H8: Concrete learners perform better on the retention measure when

provided with concrete conceptual models as opposed to abstract 

conceptual models.

Hypotheses 6 and 8 concern the interaction effects between conceptual 

models and learning styles on the retention measure. The interaction effect was 

not significant on either retention measure, F(l,211) = 0.18, p  = .67 for retention 

test 1; and F(1,204) = 1.65, p = .20 for retention test 2. These two hypotheses 

were not supported by either retention measure. Abstract learners did not benefit 

more from abstract models, and concrete learners did not benefit more from 

concrete models on the retention measure.

4.3 Summary of Findings

Table 4.8 is a summary of the hypotheses testing. The findings of this 

investigation are summarized below.
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Table 4.8 Summary of Hypotheses Testing

Hypotheses Results

Conceptual Models Effects

HI Concrete models superior to abstract models on the 
posttest measure

Support

H2 Concrete models superior to abstract models on the 
retention measure

Leamine Stvles Effects

Weak support

H3 Abstract learners superior to concrete learners on the 
posttest measure

Support

H4 Abstract learners superior to concrete learners on the 
retention measure

Interaction Effects

Support

H5 Abstract models better for abstract learners on the posttest 
measure

No support

H6 Abstract models better for abstract learners on the 
retention measure

No support

H7 Concrete models better for concrete learners on the 
posttest measure

No support

H8 Concrete models better for concrete learners on the 
retention measure

No support
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Concrete conceptual models were better than abstract conceptual models 

in teaching recursion to novice programmers. However, the teaching effects 

weakened several weeks after classroom instruction. The finding is concluded 

from the results of Hypotheses 1 and 2 testing.

Novice programmers with abstract learning styles performed better than 

those with concrete learning styles when learning recursion. The data collected 

from the three recursion performance tests used in this investigation all supported 

this claim.

Finally, no interaction effect was found between the conceptual models 

provided in instruction and novice programmers' learning styles when learning 

recursion. Abstract learners did not necessarily benefit more from abstract 

conceptual models, and concrete learners did not necessarily benefit more from 

concrete conceptual models.
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Chapter 5 Conclusion

This chapter includes a brief summary of the research problem and 

methodology used, a discussion of the results, and implications of the results. 

Finally, recommendations for future research are suggested.

5.1 Summary

Most computer science students have difficulty in learning recursion when 

the concept is first introduced. The reason may be because of a lack of everyday 

analogies and the complexity that recursive programming involves. A conceptual 

model used as an advance organizer is considered as a useful tool in helping 

students learning in a domain of this type. There is evidence that individual 

differences such as cognitive learning styles may affect students' learning. 

Furthermore, there may be connections between the conceptual models provided 

and individuals' learning styles. The purpose of this study was to better understand 

how different types of conceptual models and cognitive learning styles influence 

novice programmers when learning recursion.

The problem with which this study is concerned is Which o f two 

conceptual models (concrete or abstract) will best help novice programmers with 

different cognitive learning styles (concrete or abstract) to learn recursion?

117
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An experimental research design was planned and implemented to study 

this research problem. The design was a pretest-posttest, 2 X 2  (conceptual 

models X learning styles) factorial design. Two hundred thirty-seven students 

enrolled in an introductory computer science class at a major southwest research 

university served as the subjects for this study. Subjects were randomly assigned 

to either an abstract model group or a concrete model group and the groups were 

of approximately equal size. The treatment in the study was the different 

conceptual models (abstract or concrete) used to present recursion to the two 

model groups. Within each model group, subjects were identified as either an 

abstract learner or a concrete learner based on their scores on the scrambled LSI- 

1985. Conceptual models and learning styles were the two independent variables 

of this experimental design.

To compare students' performance in the different groups, a posttest and 

two retention tests were administered after the treatment. These three performance 

tests were the dependent variables of this design. A pretest administered prior to 

the treatment was used to equate the variance caused by students' prior knowledge 

in the statistical analysis. The statistical procedure two-way ANCOVA was 

employed to analyze all of the performance data. Two pilot studies were carried 

out to verify the instruments and to intensify the experimental design and 

procedures prior to the current investigation.

The results of this study were presented in Chapter 4 and will now be 

reviewed in the next section of this chapter.
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5.2  DISCUSSION OF THE RESULTS

The four research questions proposed in the investigation are discussed

below.

5.2.1 Conceptual Models

Research Question 1:
Are concrete conceptual models better than abstract conceptual 
models in helping students to learn recursion?

The results of Hypotheses 1 and 2 provided answers to this research 

question. Concrete conceptual models were better than abstract conceptual 

models in helping novice programmers to learn recursion. However, the effect 

was weak several weeks after the treatment (instruction). These findings are in 

accordance with Mayer's series studies (1981, 1982, 1985, 1987, 1988) which 

provided evidence for the effectiveness of using concrete models in teaching 

programming. Mayer believed that a concrete model allows novices to "see the 

works" and consequently helps them assimilate new information in a more 

coherent and useful way. On the other hand, an abstract model hides the internal 

details of a system from the users. Novices are likely to assume the system is just 

not understandable and thus they tend to memorize algorithms that "work", and 

are not able to develop a real understanding of the system.

The findings differ from two other studies (Greer, 1987; Pirolli, 

1985/1986a) on the effects of conceptual models in teaching recursion for several
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reasons. Pirolli found subjects receiving the abstract model (structure template 

model) learned to program their recursive functions in less time than did subjects 

receiving the concrete model (process tracing model). However, he did not 

compare the performance (achievement) on the tasks between the two models as 

the present investigation did and the sample size of his study was very small (N = 

19).

Greer (1987) did not find any significant difference between the concrete 

(architecture-oriented approach) and abstract (theory-oriented and task- 

performance-oriented approaches) models in teaching recursion in Pascal. The 

major differences between his study and the present investigation lie in the 

subjects and the scope of recursion involved in the experiments. The subjects of 

his study were not novice programmers but typically had at least a semester of 

programming experience and had been briefly introduced to the concept of 

recursion in their previous course. The subjects for this investigation were 

enrolling in their first computer science course and had not studied recursion 

before. Also, the scope of recursion involved in Greer's study was far more 

extensive. The current investigation involved only recursive functions with simple 

variables; the Greer's study also involved recursive procedures and recursion with 

structural variables such as arrays and pointers. It is ideal to investigate recursion 

from this global aspect, but care must be taken when measuring students' 

performance. Students’ inability to solve a recursive problem may not be because 

they do not understand recursion but because they cannot handle the more 

complicated structures involved in the problem such as lists or trees.
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The result of Hypothesis 2 showed that there were no significant 

differences between the two types of conceptual models on the retention 

measures. The concrete model group only performed marginally better than did 

the abstract model group for the retention tests, p  = .35 and .27, respectively. 

These inconclusive results may be due to the fact that only 35 minutes of 

instruction (treatment) were given in the present investigation and this may well 

be too short to demonstrate the retention effects. Luiten et al. (1980) provided 

support for this explanation. In their meta-analysis of 135 studies, they found that 

the effect of advance organizers (conceptual models, termed in this study) 

increased with time; that is, when the instruction in the experiments extended to 

several days or weeks as compared to a few hours, the retention effect was 

stronger.

Halasz and Moran (1982) suggested that a concrete model (analogical 

model in his term) is effective for communicating complex concepts to novices 

when used as a literary metaphor whose function is simply to illustrate some 

salient points of the target system, but it is dangerous when used as reasoning 

about computer systems. The problem arises when a learner tries to extract more 

structure or relationships from an analogy than is warranted (du Boulay, 1986). 

They suggested that reasoning is much better done with an abstract model. 

Bennett (1984) and Sein et al. (1987) provided evidences for this assertion. They 

found that the abstract model group performed better than the concrete model 

group in complex tasks; the effect was reversed in simple tasks. However,
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Bennett's study, which was criticized for using a very contrived and artificial task, 

and considered to have very limited external validity (Newell & Card, 1985).

The difference between the present investigation and Sein et al.s’ study are 

two fold. First, the target domains were different. They investigated a mail filing 

system while this investigation examined the domain of programming. Secondly, 

the concrete model used in their study might be too 'concrete' to infer the target 

system. They used a file cabinet as the concrete model of a filing system. Halasz 

and Moran (1982) have pointed out that a concrete model such as a filing cabinet 

is better used as a literary metaphor. When someone says that a file system is like 

a filing cabinet, it is simple to infer that the computer file system functions as a 

storage and retrieval system, but it is a complicated task to work out in detail how 

computers and filing cabinets are similar. While in the present investigation, the 

concrete models used were a concrete object (Russian Dolls) used as a literary 

metaphor and a block tracing diagram to demonstrate the mechanism of recursion.

The current investigation supports the use of concrete models in teaching 

novices programming, particularly in teaching novices recursion. The quality of 

concrete models is a critical issue in instruction. Effective concrete models must 

not only have a relative concrete base domain but also need to demonstrate an 

appropriate level of detail of the internal process of a system.
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5.2.2 Cognitive Learning Styles

Research Question 2:
Do students with an abstract learning style outperform students with a 
concrete learning style in learning recursion?

The results of Hypotheses 3 and 4 showed that students with abstract 

learning styles performed better than those with concrete learning styles in 

learning recursion. The effect was independent of the type of conceptual models 

used in instruction. The finding is in agreement with previous work (e.g., 

Cavaiani, 1989; van Merrienboer, 1988; Bostrom et al., 1987; Sein & Bostrom, 

1989, Zuboff, 1988) which found that abstract or analytical learners tend to 

perform better than concrete or non-analytic learners in computer related domains. 

The result is also consistent with Kolb's theory. Research on the Kolb's LSI has 

found a strong correspondence between individuals' learning styles and the careers 

people choose. Individuals found in the same careers tend to have similar learning 

styles. In other words, there is a 'fit' between individuals' learning styles and the 

requirements of their careers. People in the field of computer science are more 

likely to have an abstract learning style (Smith & Kolb, 1986). Learning computer 

science requires using logic and symbols, abstracting concepts, developing 

theories and models, and systematically analyzing problems. Clearly, abstract 

learners are much more comfortable with these kinds of learning situations. This 

may be the reason why abstract learners performed better than concrete learners in 

learning recursion.
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5.2.3 Conceptual Models X Learning Styles

Research Question 3:
Do students with an abstract learning style learn recursion better 
when provided with abstract conceptual models?

Research Question 4:
Do students with a concrete learning style learn recursion better 
when provided with concrete conceptual models?

These two research questions deal with the interaction effects between 

conceptual models used in instruction and an individual's cognitive learning style. 

The test of Hypotheses 5 through 8 provided the answer for these two research 

questions. There were no interaction effects detected on all three recursion 

performance measures (i.e., the posttest and two retention tests). These results 

suggested that abstract learners did not necessarily benefit more from 

abstract conceptual models, and concrete learners did not necessarily benefit 

more from concrete conceptual models in learning recursion.

Two studies (Bostrom et al., 1987; Sein & Bostrom, 1989) in the literature 

examined the interaction effects between conceptual models and learning styles in 

learning about computer systems (e.g., mail filing system). They proposed that 

abstract learners who take an analytical approach to learning would have the 

abilities to discover the rules and structures inherent in an abstract model. 

Conversely concrete learners take an experience-based approach to learning and 

tend to rely heavily on prior relevant experience drawn from a concrete model.
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Therefore, abstract learners should benefit more from an abstract model, and 

concrete learners should benefit more from a concrete model. However, their 

experiments did not provide strong support for their claim.

Table 5.1 Summary of Studies on Interaction Effects

Study Target System Measure Results*
Bostrom et al (1987)

Study #1 Financial Accuracy NS
Planning System Time NS

Comprehension NS
Study #2 Mail System Accuracy NS

Time NS
Comprehension NS

Study #3 Mail System Accuracy S
Comprehension NS

Study #4 Lotus 1-2-3 Accuracy NS
Comprehension NS

Sein & Bostrom (1989) Mail System Accuracy S
Comprehension NS

Wu (the present study) Recursion Comprehension NS
*p<.05, NS: Not Significant, S: Significant

Table 5.1 is a summary of interaction effects between conceptual models 

and learning styles on the abstract-concrete dimension in these two studies and the 

present investigation. The measure Accuracy refers to whether a particular 

learning task was completed correctly. It was measured by the number of
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experimental tasks performed correctly. Time is the amount of time taken to 

complete a task. Comprehension is the score obtained on the post-training quiz 

which tested subjects' knowledge about specific functions, features, and 

application of the target software. Two studies on the accuracy measure supported 

their claim; no significant interaction effects were found on the remaining 

measures. It seemed, in general, that the interaction effects were very weak.

The inconclusive findings might be because of the different nature of the 

measures and the different target domains. The two interaction effects found in 

Table 5.1 were both in the accuracy measure of learning a mail system. The 

accuracy measure was measured through subjects' interacting with a computer 

system. A possible explanation is that the interaction effects were more likely to 

happen when students directly interact with a computer system, but not for using 

pens and papers (such as comprehension measure), to solve a problem. If this is 

the case, the match of conceptual models and learning styles may be helpful for 

students1 debugging in programming, which requires students interacting with 

computers, but it does not provide help for comprehending an abstract concept 

such as recursion.

5.3 Implications

The importance of conceptual models in teaching/training a complex 

domain has been established in the literature. However, the form of conceptual 

models (concrete or abstract) that are more effective in helping novices learning
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has remained inconclusive. The same issue exists in using conceptual models in 

teaching recursion. The findings of this investigation suggest that concrete models 

are better than abstract models in teaching novice programmers recursion. Yet, for 

intermediate or experienced programmers who may or may not have prior 

knowledge about recursion, which type of conceptual models are favorable is still 

an open issue. Teachers should be very cautious in adapting or designing concrete 

models. A concrete model needs not only to employ an analogy from a relatively 

concrete (and familiar, if applicable) object but also to demonstrate the 

appropriate level of details of the internal mechanism as defined in this 

investigation. Several current introductory computer science textbooks (e.g., Dale 

& Weems, 1991; Koffman, 1992) have provided good examples of using concrete 

models to present recursion.

Though individual's learning style is not a measure of ability such as 

intelligence, some styles may be more effective than others in certain situations. 

Previous studies have shown that an individual's learning style can be a predictor 

of his/her success in certain career fields. The results of this investigation as well 

as other studies suggest that individuals with an abstract learning style tend to 

perform better in computer related fields. In other words, individuals with a 

concrete learning style will have more difficulty in learning computer science 

concepts such as recursion. As a teacher, it is important to identify these students 

and provide them with care and support necessary for success. Awareness of 

students' learning styles may assist teachers in aligning their teaching methods 

with their students, rather than to their own personal learning style. In addition,
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teachers can assist students in evaluating and adapting their own learning styles 

and can use more versatile learning strategies to adjust to the instructional setting 

(Davidson, 1990).

Theoretically, the matching of students' learning styles and appropriate 

conceptual models in learning a system or concept is a sound instructional 

approach. However, previous studies did not provide plausible findings. Neither 

did this investigation find any relationship between students' learning styles and 

conceptual models used in teaching recursion. A careful examination of Bostrom 

and his colleagues' studies (Bostrom et al., 1987; Sein & Bostrom, 1989) revealed 

that the relationship might exist in tasks which emphasized interacting with 

computers such as using a mail system. As for learning recursion, or programming 

in general, the matching of learning styles and conceptual models might be useful 

in tasks such as debugging programs.

5.4 Recommendations for Future Research

One limitation of the present investigation was the time of the treatment 

(instruction) which was limited to 35 minutes. This restriction may have resulted 

in the lack of retention effects seen between the conceptual models. The time 

limitation also restricted the coverage to only one aspect of recursion: recursive 

functions with simple variables. A replication study with a longer treatment period 

that covers more aspects of recursive programming is recommended. It is 

important to design a sensitive measure that can distinguish between the
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achievement in recursion and other aspects of programming (e.g., pointers) in the 

replication study.

The concern of this investigation was how conceptual models related to 

novice programmers learning recursion. Students' mental models of recursion 

were not analyzed in this study. Many studies have examined students' mental 

models of recursion (e.g., Kessler & Anderson, 1986; Pirolli, 1986a; Greer, 1987). 

However, they generally suffered from two methodological shortcomings: over

reliance on performance data and lack of ecological validity (one-shot study with 

a short time interaction between users and system) as described in Sasse's paper 

(1991). Bhuiyan et al. (1991) have done a preliminary study to explore students' 

mental models of recursion from the evolving aspects. More research which 

avoids the methodological shortcomings cited above should be conducted to better 

understand students' mental models of recursion.

The present study investigated the abstract-concrete (AC-CE) dimension 

of Kolb's learning styles in learning recursion. This dimension was considered 

more likely to have interaction effects with conceptual models used in instruction. 

It is also interesting to note how the other dimension, active-reflective (AE-RO), 

relates to students learning recursion. The active-reflective dimension deals with 

aspects of active involvement in learning and may have interaction effects with 

the type of instructional methods provided and is less related to the conceptual 

models used. For example, reflective learners would rely on observation and 

viewing things from different perspectives, but would not necessarily take any 

action in their learning. A traditional lecture-based instruction would be more
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appropriate. On the other hand, active learners prefer experimenting with 

changing situations and getting things done through action. An activity-based 

instruction such as group discussion or closed laboratory (described as in Tucker, 

1991) would be more appropriate. Future research should investigate how the 

active-reflective dimension of learning styles relates to the instructional methods 

provided.

Finally, the match of learning styles with conceptual models is 

theoretically sound as discussed in Chapter 2. However the present investigation 

and previous studies provided few supports for this assertion. Research in this 

field is still too young to draw a definite conclusion. More research needs to be 

done in the field. As observed from the previous studies, the interaction effects 

seem more likely to exist in tasks (or domains) which require directly interacting 

with computer systems. Future research is also recommended to investigate the 

relationship between the characteristic of learning tasks (or domains) and the 

matching of learning styles with conceptual models.
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Appendix A Introduction to Recursion

Recursion, Recursive Function, or Recursive Procedure is a mechanism
for defining something in terms of a simpler version of itself. An example of
recursion in mathematics is the factorial function:

f(n) = 1, ifn = 0 {Base Case)
n X f(n-1), if n > 0 (Recursive Case)

in which, f(n) is defined in terms of f(n-l). The case (or cases) for which
an answer is explicitly known is called the base case; the case for which the
solution is expressed in terms of a simpler version of itself is called the recursive
or general case. The computation of such a function is carried out by suspending
the calculation of n X f(n-l) until f(n-l) is carried out, which in turn requires that
(n-1) X f(n-2) be suspended until f(n-2) is carried out, and so on, until f(0) is
reached. For instance, the value of f(3) is carried out as following.

f(3) =3Xf(2}
= 3 X 2 X f m
= 3 X 2 X lXfTO) ( n = 0, Base Case)

= 3 X 2 X 1 X 1  ( f ( 0 ) = l )
=  6

In a programming language, a function or procedure is called recursive if it 
calls itself. For example, a Pascal implementation of the factorial function would 
be as below:

FUNCTION f (n : Integer): Integer,
BEGIN 
IF n = 0

THEN f := 1 (* Base Case *)
ELSE f := n * f(n-l) (* Recursive Case *)

END;
Function f calls itself with parameter n-1 when n is not equal to 0. This 

recursive process will eventually stop when n reaches 0.

131
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Appendix B Consent Form

Consent Form

You are invited to participate in a study of how student's learn recursion. We are 

studying the relationship between learning recursion and an individual’s learning style. If you 

decide to participate, you will be asked to fill out a leaming-style inventory which takes about ten 

minutes. This permission form allows us to obtain your examination scores in this course. Any 

information that is obtained remains confidential.

Your decision whether or not to participate does not prejudice your future relations with 

The University of Texas at Austin. If you decide to participate, you are free to discontinue 

participation at any time without prejudice.

If you have any questions, please ask us: Dr. Nell Dale, 471-7316, Instructor Suzy 

Gallagher, Dr. Lowell Bethel and Cheng-Chih Wu, 471-7334. We will be happy to answer your 

questions.

You may have a copy of this form to keep if you wish.

Your signature indicates that you have read the information provided above and have 

chosen to participate.

Signature Date ID number

Please Print Your Name Here Signature of Investigator
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Appendix C Scrambled Learning-Style Inventory 1985

Leaming-Style Inventory
N am e_______________________________  ID #__________________________

INSTRUCTIONS
O n the follow ing you will be asked to complete 12 sentences. Each h as four endings. Rank the endings for each 

sentence according to how  well you  think each one fits w ith  how  you w ould  go about learning som ething. Try to recall 
some recent situations w here you had to leam  som ething new , perhaps in  your job o r current classes. Then, using the 
spaces provided, rank  a  “V  for the sentence end ing  that describes how  y o u  leam  best, dow n to a "1" for the sentence 
ending that seem s least like the w ay you w ould  leam.
Be sure to rank  all the endings for each sentence u n it  Please do  n o t m ik e  Hw.

Example o f com pleted sentence set: _

0. W hen 1 leam : &£ I am  happy. I am  fast. Ji_  I am logical. _2. I am  careful.

REMEBER: 4 »  most like you
3 = second m ost like you 
2 a  third m ost like you 
1 a  least like you

AND: You a re  ranking across, not dow n.

1. W hen I leam : __  I like to deal
w ith m y feelings.

__  I like to watch
and  listen.

__  I like to think
about ideals.

__  I like to be doing
things.

2. I am best when: __  /  listen and watch
carefully .

__  I rely on logical
th in k in g .

__  1 work hard to get
things done.

__  I  trust m y hunches
and feelings.

3. W hen I am  learning: __  I tend to reason
things out.

__ I am  responsible
about things.

__  I have strong
feelings and  
reactions.

__  I am  quiet and
reserved.

4. I leam by: __  doing. __ fee ling . __  watching. __  th inking .

5. W hen I leam : __  I am  open to new
experiences.

__  1 look a t all sides
of issues.

__  I like to analyze
things, break 
them dow n into 
their parts.

__  I like to try
things out.

6. When I am learning: __  I am an observing
person.

__  I am a logical
person.

__  I am an active
person.

__  I am an intuitive
person.

7. 1 leam  best from: __  rational theories. __  a chance to try  out
and practice.

__  personal
re la tionsh ips.

__ observation.

S. IVhen I learn: __  I like to see
results from m y 
work.

__ I feel personally
involved in 
things.

_  I take m y time 
before acting.

__  I like ideas and
theories.

9 .1 leam  best when: __  I rely on my
feelings.

__  I rely on my
observations.

__  I rely on m y
ideas.

__  I can try  things
ou t for myself.

10. When I am learning: __  I am a reserved
person.

__  1 am a rational
person.

__  I am a responsible
person.

__  I am an accepting
person.

11. W hen I leam : __  I evaluate things. __  I like to be active. __  I get involved. __  I like to observe.

12. 1 learn best whew __  1 am practical. __  1 am receptive __  I am careful. __  I analyze ideas.
and open-minded.
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Appendix D Item Format for the Scrambled LSI-1985

Item Column 1 Column 2 Column 3 Column 4

1 CE RO AC AE
2 RO AC AE CE
3 AC AE CE RO
4 AE CE RO AC
5 CE RO AC AE
6 RO AC AE CE
7 AC AE CE RO
8 AE CE RO AC
9 CE RO AC AE
10 RO AC AE CE
11 AC AE CE RO
12 AE CE RO AC
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Appendix E Concrete Instructional Material

Objectives
1. To understand the definition of recursion
2. To read and understand recursive programs (Recognition)
3. To generate base cases and recursive cases of a recursive function

(Generalization)

1. Introduction
A. Use Russian Dolls as the literal metaphor to convey the concept of 

recursion.
B. Define the Base Case and Recursive Case

2. Recursion in Pascal
Example 1 Factorial Problem

Write a recursive function to calculate n!.
A. Show the solved recursive program
B. Identify the base case and recursive case
C. Use Block Tracing Diagram to trace the result of 3!

3. Designing Recursive Algorithms
A. Understand the problem
B. Determine the size of the problem to be solved
C. Determine the base case(s)
D. Determine the recursive case(s)

4. Verification
Block Tracing Diagram to trace the solved program:

A. Trace base case
B. Trace a small size of recursive case
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5. Examples

Example 2 Summing Problem
A-Problem Specification: Write a recursive function to calculate the result of 

1 + 2 + 3 +... + N.
B. Analysis and Design: Determine the size, base case(s), and recursive

case(s) of the problem.
C. Implementation: Complete the recursive program.
D. Verification: Trace both base case(s) and recursive case(s) using Block 

Tracing Diagram.

Example 3 Power Problem
A. Problem Specification: Write a recursive function to calculate a positive 

integer to a positive power. (Xl = X; X ^ = X * X ^-l)
B. Analysis and Design: Two parameters are required in this problem, which 

one is the size of the problem? Determine the base case(s) and recursive 
case(s).

C. Implementation: Complete the recursive program.
D. Verification: Trace both base case(s) and recursive case(s) using Block 

Tracing Diagram.

6. Elaboration and Conclusion
The mechanism of the recursion is the same in the following situations:

A. Many base cases and/or many recursive cases
B. Recursive Procedures
C. Structured Variables, e.g., arrays or linked list
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Appendix F Examples of Block Tracing Diagram

Russian Dolls

Q: How many Dolls do you have?

A: Myself + The # of Dolls inside me
Q: How many Dolls do you have?
A: Myself + The # of Dolls inside me

Q: How many Dolls do you have?

A: Mvseif + The #... •
Q: How manv Dolls...?

A: Myself + The #....
No More

Tracing Fact(3)

Fact (3)
BEGIN 

IF N = 0 THEN Fact := 1 
ELSE Fact := N • Fact (N • 1)

BEGIN 
IF N =0 THEN Fact:= 1 

ELSE Fact := N * Fact (N • 1)
BEGIN 

IF N= 0 THEN Fact := 1 
ELSE Fact := N * Fact (N-l)

BEGIN
IF N= 0 THEN Fact := 1

ELSE —
END:

END:
END:

END:
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Appendix G Transparencies for Concrete Instructional Material

Russian Dolls

Q: How many Dolls do you have?

A: Myself + The # of Dolls inside me
Q: How many Dolls do you have?
A: Myself + The # of Dolls inside me

Q: How many Dolls do you have?

A: Myself + The # ... •
QiHow njan^D olls^^

A: Myself+ The#....
No More

Concrete 1

Recursion

• A problem is solved in terms of a smaller version of itself.

• An important concept in Programming Sc Problem Solving

O bservationa from the Russian Dolls

• Recursively calls a small version of itself

• Eventually the recursive calk stop

• Return the results to the calling functions

Concrete 2
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Recursion in Rascal

PROGRAM RecuFunCall (Input, Output);

FUNCTION Fact (N: Integer): Integer;

(* Compute the factorial of N  ( i.e. N !) *)

B EG IN

IF  N  n  0 THEN Fact .■* 1 (* Base Case*)

ELSE Fact N * Fact (N - 1) (* Recursive •)

END;

BEGIN

Writeln ( Fact (0)); Writeln ( Fact (3));

END;

Concrete 3

Tracing Fact(3)

Fact (3)_______________________________________
BEGIN 

IF N = 0 THEN Fact := 1
ELSE Fact := N ♦ Fact (N -1 )_________________

I BEGIN
IF N = 0  THEN Fact:= 1

ELSE Fact := N * Fact (N -1 )_______
(BEGIN

IF N =0 THEN Fact:= l 
ELSE Fact := N • Fact (N-l) 

|BECIN
IF N= 0 THEN F a c t 1

ELSE___
I END;______________

I END; |
IEND; ~ |

END;_________________________  1

Concrete 4
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Elements ot a Recursive Algorithm

• Size (or Parameter) of the problem

— Changed every recursive call

• Base (or Stop) Case(s)

— Recursive calls stop here

• Recursive (or General) Casete)

— A smaller version of itself

— Size steps toward the Base Case(s)

A problem is solved in term s of a smaller version of itself.

Concrete 5

How To Design a Recursive Program

1. Find the Recursive Definition

i.e. Decide the Size, Base Case(s) and Recursive Casets)

Example: N! = N * (N -1 )* ____ *2*1; 0! = 1

• Size?

• Base Case(s) ?

The smallest or simplest easels) which can be solved directly

• Recursive Case(s) ?

How to represent F (N) in terms of a smaller version of itself?

Concrete 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

141

Fact (N) = 1, if N = 0 (Base Case)

N  * Fact (N -1), if N > 0 (Recursive Case)

2. Pascal Program

FUNCTION FunName ( <Slze» ) : :

BEGIN

IF  <Basc Condiiion>

T H EN  <Base Relation*----- (Base Case)

ELSE cRecursive Rclation> IRecu. Case)

END;

( A problem might have many Base and Recursive Cases)

3. Verification; Base Case ( Fad(0)) and other cases (eg. Fad(3>).

Concrete 7

Sum 1 , 2 , N

Write a recursive function to calculate 1 + 2+ 3  +.. ...„+ (N -l) + N

1, Recursive Definition

• Size?

• Base Case?

• Recursive Case ?

( Size steps toward Base Case?)

Sum (N) = 1, if N = 1

= S u m (N -l) + N, if N > 1

Concrete 8
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2, Pascal Program

FUNCTION Sum ( _____ ): Integer;

BEGIN

IF

THEN

ELSE

END;

3. Verification

Sum (1) =

Sum (3) = Sum (2) + 3
= Sum (1) + 2 + 3

Concrete 9

Power of an Integer

Write a recursive function to calculate a positive integer to a 

positive power, e.g. 32 = 3*3 = 9, 24 = 2 * 2 * 2 * 2  = 16

P o w ( X , N ) = X N =  X * X »   *X*X

1. Recursive Definition 

•S ize?

• Base Case ?

• Recursive Case ?

( Size steps toward Base Case? )

Concrete 10
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Pow(X,N)= X, 112sa

X *Pow (X ,N -l) if N > 1

2. Pascal Program

FUNCTION Pow ( ): Integer;

BEGIN

IF THEN

ELSE

END;

3, Veriftalton

Pow (5,1) = Pbw(3,4) =

Concrete 11

Tracing Pow (3, 4)

Pow (X, N) _________________________________
BEGIN 

IF N = 1 THEN Pow:=X
ELSE Pow := X * Pow OL N-1>_________________

IBEGIN
IF N = I THEN Pow := X

ELSE Pow := X * Pow (X N-l)_______
[BEGIN

IF N=1 THEN Pow := X 
ELSE Pow :«= X » Pow <X. N-l)

Ibegin
IF N = 1 THEN Pow :»  X

ELSE___
I END;______________

I END; |
IEND; ]

END;_________________________  |

Concrete 12
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Handshakes fcxample
Suppose N diplomats are at a party, and during the course of the 

festivities each shakes hands with every other diplomat exactly once.

How many handshakes occur?

• Base Case

HS ( ) =

• Recursive Case

HS<3) =

HS (4) =

HS(N) =

Concrete 13

More on Recursion

•  Where is the Loop ( U. WHILE, REPEAT, and FOR) ?

• Many Base Cases and Recursive Cases

— needs nested IF ... THEN... ELSE structure

•  Recursive Procedure

— the same mechanism as in Function

• Recursion with Structured Variables

— such as array, linked list (pointer)

— works the same as in Simple Variable

Concrete 14
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Appendix H Abstract Instructional Material

Objectives
1. To understand the definition of recursion
2. To read and understand recursive programs (Recognition)
3. To generate base cases and recursive cases of a recursive function

(Generalization)

1. Introduction
A. Use Mathematical Definition to introduce the concept of recursion.
B. Define the Base Case and Recursive Case

2. Recursion in Pascal
Example 1 Factorial Problem

Write a recursive function to calculate n!.
A. Show the solved recursive program
B. Identify the base case and recursive case
C. Use Mathematical Equation to trace the result of 3!

3. Designing Recursive Algorithms
A. Understand the problem
B. Determine the size of the problem to be solved
C. Identify the base case(s)
D. Identify the recursive case(s) using induction concept

4. Verification
Brief introduction of Mathematical Induction and use it 

to argue the correctness of the solved program:
1. The program is correct for the base case

2. It is also correct for the recursive case
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5. Examples

Example 2 Summing Problem
A; Problem Specification: Write a recursive function to calculate the result of 

1 + 2 + 3 +... + N.
B. Analysis and Design: Determine the size, base case(s), and recursive 

case(s) of the problem.
C. Implementation: Complete the recursive program.
D. Verification: First, trace the result of Sum(3) using Mathematical 

Equation, then, argue the correctness of the algorithm by Mathematical 
Induction concept:
1. The algorithm is correct for the Base Case
2. The algorithm is correct for the Recursive Case

Example 3 Power Problem
A. Problem Specification: Write a recursive function to calculate a positive 

integer to a positive power. (X^ = X; = X * X ^-l)
B. Analysis and Design: Two parameters are required in this problem, which 

one is the size of the problem? Determine the base case(s) and recursive 
case(s).

C. Implementation: Complete the recursive program.
D. Verification: Arguing the correctness of the algorithm by Mathematical 

Induction concept:
1. Base case: Power(2,l)=2

2. Recursive Case: Power(2,N) = 2 * Power(2,N-l)

6. Elaboration and Conclusion
The mechanism of the recursion is the same in the following situations:

A. Many base cases and/or many recursive cases
B. Recursive Procedures
C. Structured Variables, e.g., arrays or linked list
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Appendix I Transparencies for Abstract Instructional Material

Recursion

• An important concept in Programming Sc Problem Solving

• A mechanism for defining something in terms of a smaller

version of itself.

Example: Factorial function in mathematics 

By definition 0! = 1

N! = N * (N -l)* (N -2 )* _______ *2*1

3! =

Abstract 1

Recursive Definition

Fact <N) = 1, if N = 0 (Base Case)

N * Fact (N -1), if N > 0 (Recursive Case)

• Calculation

Fact(0) =

Fact (3) = 3 Fact (2)

= 3 * 2 • Fact (1)

= 3 * 2 * 1 * Fact (0)

= 3 .  2 • 1 • 1 = 6

• How does recursion work in a program?

Abstract 2
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Recursive Function in Rascal

PROGRAM RecuFunCall (Input, Output);

FUNCTION Fact (N: Integer): Integer;

(* Compute the factorial of N ( i.e. N !) *)

BEG IN

IF  N n O  THEN F o e t a l  <* Base Case*) 

ELSE Fact a  N  '  Fact IN - 1) (* Recursive *)

E N D ;

BEGIN

Writeln ( Fact (0)); Writeln ( Fact (3));

END;

Abstract 3

Elements of a Recursive Algorithm

• Size (or Parameter) of the problem

— Changed every recursive call

•  Base (or Stop) Caseis)

— Recursive calls stop here

• Recursive (or General) Case(s)

— A smaller version of itself

— Size steps toward the Base Caseis)

A problem is solved in terms of a smaller version of itself.

Abstract 4
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How To Design a Recursive Program

1. Find the Recursive Definition

i.e. Decide the Size, Base Caseis) and Recursive Casets)

Example: N I s N 'C J - l ) ’ ....... *2*1; 0! = 1

•Size?

• Base Caseis) ?

The smallest or simplest casets) which can be solved directly

• Recursive Caseis) ?

Assume a smaller case(s) is true.

How to represent F (N) in terms of the smaller casefs) ?

Abstract S

Fad <N) = 1, if N = 0 (Base Case)

N * Fact (N -l) ,  if N > 0 (Recursive Case)

2. Pascal Program

FUNCTION FunNatne ( <Slze> 1: :

BEGIN

IF  <Base Condition>

THEN <Base Relation? [Base Casel

ELSE cRecursive Relation? [Recu. Case)

END;

• A problem might have many Base and Recursive Cases

Abstract 6
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3. Verification: Base Case<s) and Recursive Case(s)

Mathematical Induction: Prove the Base h  Inductive Case(s)

•  Base Case

F act(0) =

• Recursive Case (Inductive Case)

Assume Fact (N -1 ) = (N -1)1 is true,

FactOM) = N * Fact (N -1)

= n *(n - d ; = n i

Abstract 7

Sum 1 , 2 , N

Write a recursive function to calculate 1 + 2 + 3  +.. -...+ <N-1) + N

1. Recursive Definition

• Size?

• Base Case?

• Recursive Case ?

( Size steps toward Base Case?)

Sum (N) = 1, if N = 1

= Sum (N -1) -t- N, if N >1

Abstract 8
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2. Pascal Program

FUNCTION Sum (______________ ): Integer;

BEGIN

IF ___________  THEN__________________

ELSE __________________________

END;

3. Verification

• Sum (1) = (Sum (3) = ?)

• Assume Sum (N -1) = 1 +2 + ... + (N -l)  is true 

Sum(N) = S um (N -l) + N = 1 +2  + ... + (N -1 )+ N

Abstract 9

Power ot an Integer

Write a recursive function to calculate a positive integer to a 

positive power, e.g. 32 = 3*3 = 9, 2* = 2 *2*2*2 = 16

1. Recursive Definition

• Size?

• Base Case ?

• Recursive Case ? ( Size steps toward Base Case?)

Assume XN-1, how to represent XN in terms of XN-1?

Pow (X, N) = X, if N = 1

X * Pow (X, N -1), if N > 1

Abstract 10
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2,.P?wtl Program

FUNCTION Pow <______________ ): Integer;

BEGIN

IF ___________________

THEN __________________________

ELSE __________________________

END;

3. Verification 

•Pbw (X,l> =

• Assume Pow (X, N-l) = XN-1 is true 

Pow(X,N)= X*Pow<X,N-l) =

Abstract 11

Handshakes Example
Suppose N diplomats are at a party, and during the course of the 

festivities each shakes hands with every other diplomat ecactly once 

How many handshakes occur?

• Base Case

Handshake ( )=

• Recursive Case

Suppose there are N -1  diplomats and let HaniShakt (N-l) 

denote the number of handshakes that occur.

Then if one new diplomat arrives...

HandShake(N) =

Abstract 12
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More on Recursion

•  Where is the Loop ( U. WHILE, REPEAT, and FOR) ?

• Many Base Cases and Recursive Cases

— needs nested IF ... THEN ... ELSE structure

• Recursive Procedure

— the same mechanism as in Function

• Recursion with Structured Variables

— such as array, linked list (pointer)

— works the same as in Simple Variable

Abstract 13
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Appendix J Pretest

CS 304P - Review Test I - Fall 92

October 1,1992

NOTE: Correct responses are based on standard Pascal as  presented in the 
textbook. Record your answers on scantron form.

Multiple choice - choose the single best answer for each item 
below. (2 points each)

1. Every Pascal program must include:
a. BEGIN and END
b. input and output
c. a t least one constant
d. at least one variable
e. all of the above

2. The Pascal data type which can represent only positive numbers is
a. char
b. integer
c. real
d. boolean
e. none of the above

3. Which of the following is a legal Pascal identifier for a  vanable?
a. VALUES
b. big-number
c. program
d. Seco2d
e. none of the above

4. Given two integers as input, which of the following operators does not 
return an integer result?

a. +
b. -
c. ‘
d. /
e. none of the above

5. The part of a  computer that stores both programs and data is the
a. CPU
b. control unit
c. memory
d. software
e. interface
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Given the boolean variables A, B, C, and D, show the values of 
expressions 6-9, if: A = FALSE, B = FALSE, C = TRUE, D = TRUE.

6 . (A OR B) AND (C OR D)
a. TRUE
b. FALSE
c. compile-time error
d. run-time error
e. not enough information

7. NOT A AND B AND (32 > 51)
a. TRUE
b. FALSE
c. compile-time error
d. run-time error
e. not enough information

8 . (7 > 4 OR 3) AND A
a. TRUE
b. FALSE
c. compile-time error
d. run-time error
e. not enough information

9. Which of the following CANNOT be a computer output device?
a. keyboard
b. magnetic tape drive
c. liquid crystal display terminal
d. laser printer
e. video display terminal

10. A step-by-step finite process for solving a  problem is an
a. implementation
b. induction
c. altercation
d. algorithm
e. extension

11. Given the declaration VAR E: BOOLEAN; What is the value of the 
expression (E OR NOTE)? (Assume E has been initialized).

a. TRUE
b. FALSE
c. E
d. NOTE
e. not enough information
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12. What is written by the statement denotes a  space):
WRITE (SQR (0.32/2.0) :5:4)

a. 0.0256
b. _0.026
c. _0.0256
d. _0.03
e. error

13. Which of the following is a  correct Pascal expression equivalent to:

(5.-3 Y) X  — L- 
4 Y - 5

a. (5 -Y  + Y + YDIV4) DIV(Y-5)
b. (5 - 3) * Y / 4 * (1/ ( Y - 5))
c. ((5 - (3 (Y))) / 4 ) * 1 / ( Y - 5 )
d. ((5 - ( Y + ( Y + ( Y )))) / 4) / ( Y - 5 )
e. none of the above

14. Given the following declarations, which of the choices is a correct 
Pascal statement?

VAR 11,12: INTEGER:
R1.R2: REAL;
C1.C2: CHAR:
B1.B2: BOOLEAN;

a. B1 AND B2 < 3 -  4
b. C1 AND TV OR R1 < R2
C. R1 < 3  + 11 -B 2  0R N 0T B 1
d. (Cl ->  'M') AND B2
e. all of the above

15. Which operator is evaluated FIRST in the following Pascal 
expression?

A AND ( B OR (X = Y ))  AND ( Z < 49)
a. the first AND
b. OR
c. =
d. the second AND
e. <
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Questions 16-19 are based on the following program. This code 
counts the question marks found in the input file, DATA.

PROGRAM TESTI (INPUT, OUTPUT, DATA);
VAR DATA: TEXT; CH: CHAR; NUM: INTEGER; 
BEGIN

1
NUM >  0;
WHILE 2 DO 

BEGIN
WHILE 3 DO 

BEGIN
READ (DATA, CH);
IF CH -  '7  THEN NUM NUM + 1 

END;
 i _____

END
B^D.

of the following properly fills blank 1 above? 
REWRITE(DATA);
RESET(DATA);
C H '?';
RESET(INPUT); 
none of the above

17. Which of the following properly fills blank 2 above?
a. NOT EOF
b. NOTEOLN
c. C H - '?
d. NOT EOF(DATA)
e. none of the above

18. Which of the following properly fills blank 3 above?
a. NOT EOF(DATA)
b. NOT EOLN(DATA)
c. NOT (CH - '? ')
d. N U M -0
e. none of the above

19. Which of the following properly fills blank 4 above?
a. READ(DATA);
b. READLN(DATA);
c. RESET(DATA);
d. REWRITE(DATA);
e. none of the above

16. Which
a.
b.
c.
d.
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20. Which operator is evaluated LAST in the following Pascal expression? 
(12.5  * 3 - 4 2 ) / ( 1 9  + 432 DIV 6 6 )

a. *
b. -
c. /
d. +
e. DIV

21. Which of the following is a  correct Pascal equivalent of A <  B?
a. NOT (A >m  B)
b. A <> B
c. NOT (A > B)
d. A NOT > B
e. all of the above

22. Which of the following is a  correct Pascal condition requiring both X 
and Y to be at least 27?

a. X A ND Y > 2 7
b. X > 2 7 ANDY> 27
c. NOT ( X < 2 7 ) OR NOT ( Y < 27)
d. NOT ( (  X < 27 ) OR ( Y < 2 7 ) )
e. none of the above

23. What are the values of the variables after execution of the following 
statements? L, M, N and P are integer variables.

L >  12 + 5;
M L - 8;
N >  L + M * 2;
M >  17;
P : = L  + M + N;

a. L is 17; M is 9; N is 68; P is 94
b. L is 17; M is 26; N is 69; P is 112
c. L is 17; M is 17; N is 34; P is  68
d. L is 17; M is 17; N is 35: P is 69
e. error

24. The purpose of testing should be to show
a. that the program runs correctly on the class data
b. the absence of errors
c. the presence of errors
d. that the program compiles correctly
e. none of the above
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Given the declarations, read statements, and file, DATA, below, 
what is the value of the variables after executing the 
statements in numbers 25-28?
DECLARATIONS: DATA (each _  represents a  blank space):

VAR num1, num2 : INTEGER: 23_9B_1
ch1, ch2 : CHAR; FR_725
DATA: TEXT; _96_N_34

25. RESET(DATA);
READ (DATA, num1, num2, ch1, ch2);

a. num1 -  2, num2 -  3, ch1 = ch2 -  '9'
b. num1 -  23, num2 » 9, ch1 -  'B', ch2 -
c. num1 -  23, num2 » 9B, ch1 = ch2 -  '1'
d. num1 -  23, num2 -  9, ch1 -  'F , ch2 -  'R'
e. error

26. RESET(DATA);
READ (DATA, ch1);
READLN (DATA);
READ (DATA, ch2, num1, num 2);

a. num1 -  9, num2 = 1, ch1 = '2', ch2 = 'F
b. num1 -  9, num2 » 1, ch1 « '2 ', ch2 -  ’3*
c. num1 ■ 725, num2 -  96, ch1 -  '23', ch2 »
d. num1 -  23, num2 -  9, ch1 -  'B', ch2 -
e. error

27. RESET(DATA);
READLN (DATA, ch1, ch2, numl);
READ (DATA, ch2, ch1);
READ (DATA, numl, num2);

a. numl -  1, num2 -  725, ch1 » '2 ', ch2 -  '3'
b. numl = 725, num2 * 96, ch1 = 'R', ch2 = 'F
c. numl » 96, num2 » 725, ch1 » 'F , ch2 = 'R'
d. numl -  96, num2 -  34, ch1 - ch2 »
e. error

28. RESET (DATA);
READLN (DATA, numl, ch1);
READLN (DATA, ch1, ch2. num2);
READ (DATA, ch1, numl, ch2, ch1, ch2);

a. numl = 96, num2 =* 725. ch1 = 'N', ch2 =
b. numl = 23, num2 = 725, ch1 = ch2 = 'R'
c. numl = 23, num2 » 725. ch1 = 'F , ch2 » '4 '
d. numl = 96, num2 = 725, ch1 = '3', ch2 = '4'
e. error
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What is printed by the following code, given the values in 29*35.

IF X < - Y THEN
IF X < Y THEN

WRITELN ('RED')
ELSE
WRITELNCBLUE’)

ELSE IFX<Y THEN
WRITELNfGREEN')
ELSE
WRITELN (’YELLOW)

29. X -  12, Y -  34 a. BLUERED
b. RED
c. GREEN
d. YELLOW
e. none of the above

30. X -  6, Y -  -9 a. RED
b. GREEN
c. YELLOW
d. GREENYELLOW
e. none of the above

31. X - 51, Y - 51 a. RED
b. BLUE
c. GREEN
d. BLUEYELLOW
e. none of the above

32. Given the following program, which line contains code which will 
cause a  compiler error?

1 PROGRAM REVIEWI (INPUT, OUTPUT);
2 VAR A, B : REAL;
3 BEGIN
4 A >  7; B 6.25;
5 IF A + B > 10
6 THEN WRITELN (’BIG NUMBERS’);
7 ELSE WRITELN (’LITTLE NUMBERS’)
8 END.

a. line 2
b. line 4
c. line 6
d. line 8
e. all of the above
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33. What is the proper loop invariant for the following code segment?
Count >  1;
Sum :=0;
WHILE Count < -B  DO 

BEGIN
Sum := Sum + A;
Count >  Count + 1

END;
a. Sum = (Count - 1) * A
b. Count > -  1 AND Count <« B + 1
c. (Sum -  (Count -1) * A) AND (Count > -1  AND Count < -  B + 1)
d. (Sum -  (Count -1) * A) AND (Count > - 1 AND Count < -  B)
e. none of the above

34. Which of the following statements sets CubeEven to TRUE if the cube 
of Number is even and FALSE otherwise?

a. IF ((Number * Number * Number MOD 2) = 0) -  TRUE
THEN Cube EvenTRUE 
ELSE CubeEvenFALSE;

b. IF ((Number * Number * Number) MOD 2 - 0 )
THEN Cub eEvenTRU E 
ELSE CubeEvenFALSE;

c. CubeEven >  (Number * Number * Number MOD 2 » 0);
d. all of the above
e. none of the above

35. Which of the following is syntactically invalid?
(All variables are integers and have been initialized)

1. A Constant;
2. B :=» 5.5 MOD 6;
3. C a t C a t  + Dog;

a. 1 only
b. 2 only
c. 3 only
d. 1 and 2 only
e. all are valid
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Appendix K Posttest

Name__________________  ID#_____

Have you studied recursion before?  Yes  No

Please show your work 

Question 1
Consider the Pascal function described below:

FUNCTION F (N: Integer): Integer,
BEGIN 

IF N = 0
THEN F := 1
ELSE F := F (N -1) + 2

END;

1. What is the value of F (1)?________
2. What is the value of F (3)?________

Question 2
Complete the following recursive function which performs multiplication 

using addition, (e. g., 5 X 3  = 5 + 5 + 5)

FUNCTION Multiply (P, Q: Integer): Integer;
(* Precondition: P and Q are defined and Q > 0 *)
(* Postcondition: Returns P X Q *)

BEGIN
IF ____________________

THEN________________________________
ELSE ___________________________________

END;
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Ouestion_3
What is the output of the following Pascal procedure?

PROCEDURE PrintNum (N: Integer);
BEGIN 

IF N = 0
THEN (* do nothing *)
ELSE BEGIN

PrintNum (N -1);
Write (N)

END
END;

1. What is the output of PrintNum (1)? __________
2. What is the output of PrintNum (3)? __________

Question 4
Complete the following recursive function which generates the Nth number in 

the Fibonacci sequence, which is defined to b e : 1 ,1 ,2 ,3 ,5 ,8 ,13 ,....

FUNCTION Fib (N: Integer): Integer;
(* Precondition: N is defined and N >= 1 *)
(* Postcondition: Returns the Nth number of the sequence *)

BEGIN

IF ____________________

THEN Fib := 1

ELSE ___________________________________
END;
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Appendix L Retention Test 1

1. Given the following function, what is the returned value of F(4)?
FUNCTION F (N: Integer): Integer,
BEGIN 

IF N = 0
THEN F := 1
ELSE F := F (N - 2) + 1

END;
a. 1
b. 2
c. 3
d. 4
e. none of the above

2. The following function calculates the sum of successive even integers starting 
at 0 and ending at N (N is an even integer).
( for example SUM(6) = 12, (6 + 4 + 2 + 0))

FUNCTION Sum (N: Integer): Integer,
BEGIN (* Sum *)

IF N = 0
THEN Sum := 0
ELSE Sum :=_______________________

END;
Which of the following properly fills the blank above?

a. Sum (N) + 2
b. Sum (N -1) + 2
c. Sum (N -1) + N
d. Sum (N - 2) + 1
e. Sum (N - 2) + N
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3. Given the following function, what value is returned by Fib (5)?
FUNCTION Fib (N: Integer): Integer;
BEGIN

IF (N = 1) OR (N = 2)
THEN Fib := 1
ELSE Fib := Fib (N - 1) + Fib (N - 2)

END;
a. 5
b. 3
c. 2
d. 1
e. none of the above

Questions 4 and 5 refer to the type definition and recursive function below which 
calculates the value of a positive integer to a non-positive power. Note = 1; 
and XN = l/X'N, if N < 0. (for example X*5 = l/x5; 2-3 = 1/23 = 8)

TYPE Negatives = -MaxInt..O;
FUNCTION NegPower (X: Integer; N: Negatives): Real; 
BEGIN 

IF N = 0
THEN NegPower :=______1____________
ELSE NegPower :=______2____________

END;

4. Which of the following properly fills blank 1 above?
a. 0
b. 1
c. -1
d. X
e. NegPower (X, N -1)
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5. Which of the following properly fills blank 2 above?
a. NegPower (X, N -1)
b. NegPower (X, N -1) * X
c. NegPower (X, N + 1) * X
d. ( NegPower (X, N - 1)/X)
e. ( NegPower (X, N + 1) / X)
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Appendix M Retention Test 2

1. Given the following function, what is the value returned by F(-2)?
FUNCTION F (N: Integer): Integer;

BEGIN 
IF N = 0

THEN F := 1
ELSE F := F (N + 1) + 1

END;
a. -3
b. 1
c. 2
d.3
e. none of the above

2. Given the following function, what is the value returned by F(3,2)1
FUNCTION F (P, Q: Integer): Integer, 

BEGIN 
IF Q = 1

THEN F := P
ELSE F := P + F(P, Q-l)

END;
a. 3
b. 5
c. 6
d. 9
e. none of above
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Questions 3 and 4 refer to the following function which generates the Nth integer
the sequence: 0, 3 ,6 ,9 ,12  (For example, GenNum(l) generates 0; and
GenNum(3) generates 6)

FUNCTION GenNum (N : Integer): Integer;
BEGIN 

IF N = 1
THEN GenNum :=_________ 1_________
ELSE GenNum :=_________2_________

END:

3. Which of the following properly fills the blank 1 above?
a. 0
b. 1
c. 3
d. GenNum(N-l)
e. GenNum(N-3)

4. Which of the following properly fills the blank 2 above?
a. GenNum(N-l) + GenNum(N-2)
b. GenNum(N-l) + N
c. GenNum(N-3) + N
d. GenNum(N-l) + 3 
e GenNum(N-3) + 3
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5. The following procedure RevPrintArray writes out all the elements in an array 
in reverse order.

TYPE Array Type = Array [ 1 ..Length] of Integer;

PROCEDURE RevPrintArray (A: ArrayType; Length: Integer); 
BEGIN

IF Length >0 THEN 
BEGIN

END
END;

Which of the following properly fills the blank above?

a. Writeln(A[l]); RevPrintAiray(A, Length-1)
b. Writeln(A[Length]); RevPrintArray(A, Length-1)
c. RevPrintArray(A, Length-1); Writeln(A[Length])
d. RevPrintAiray(A, Length); Writeln(A[Length-l])
e. none of the above
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